Edward A Vessel, Laura Pasqualette, Cem Uran, Sarah Koldehoff, Giacomo Bignardi, Martin Vinck
{"title":"Self-Relevance Predicts the Aesthetic Appeal of Real and Synthetic Artworks Generated via Neural Style Transfer.","authors":"Edward A Vessel, Laura Pasqualette, Cem Uran, Sarah Koldehoff, Giacomo Bignardi, Martin Vinck","doi":"10.1177/09567976231188107","DOIUrl":null,"url":null,"abstract":"<p><p>What determines the aesthetic appeal of artworks? Recent work suggests that aesthetic appeal can, to some extent, be predicted from a visual artwork's image features. Yet a large fraction of variance in aesthetic ratings remains unexplained and may relate to individual preferences. We hypothesized that an artwork's aesthetic appeal depends strongly on self-relevance. In a first study (<i>N</i> = 33 adults, online replication <i>N</i> = 208), rated aesthetic appeal for real artworks was positively predicted by rated self-relevance. In a second experiment (<i>N</i> = 45 online), we created synthetic, self-relevant artworks using deep neural networks that transferred the style of existing artworks to photographs. Style transfer was applied to self-relevant photographs selected to reflect participant-specific attributes such as autobiographical memories. Self-relevant, synthetic artworks were rated as more aesthetically appealing than matched control images, at a level similar to human-made artworks. Thus, self-relevance is a key determinant of aesthetic appeal, independent of artistic skill and image features.</p>","PeriodicalId":20745,"journal":{"name":"Psychological Science","volume":"34 9","pages":"1007-1023"},"PeriodicalIF":4.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/09567976231188107","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
What determines the aesthetic appeal of artworks? Recent work suggests that aesthetic appeal can, to some extent, be predicted from a visual artwork's image features. Yet a large fraction of variance in aesthetic ratings remains unexplained and may relate to individual preferences. We hypothesized that an artwork's aesthetic appeal depends strongly on self-relevance. In a first study (N = 33 adults, online replication N = 208), rated aesthetic appeal for real artworks was positively predicted by rated self-relevance. In a second experiment (N = 45 online), we created synthetic, self-relevant artworks using deep neural networks that transferred the style of existing artworks to photographs. Style transfer was applied to self-relevant photographs selected to reflect participant-specific attributes such as autobiographical memories. Self-relevant, synthetic artworks were rated as more aesthetically appealing than matched control images, at a level similar to human-made artworks. Thus, self-relevance is a key determinant of aesthetic appeal, independent of artistic skill and image features.
期刊介绍:
Psychological Science, the flagship journal of The Association for Psychological Science (previously the American Psychological Society), is a leading publication in the field with a citation ranking/impact factor among the top ten worldwide. It publishes authoritative articles covering various domains of psychological science, including brain and behavior, clinical science, cognition, learning and memory, social psychology, and developmental psychology. In addition to full-length articles, the journal features summaries of new research developments and discussions on psychological issues in government and public affairs. "Psychological Science" is published twelve times annually.