{"title":"Multifunctional Nanofibrous Scaffolds Capable of Localized Delivery of Theranostic Nanoparticles for Postoperative Cancer Management","authors":"Lin Guo, Qilong Zhao, Li-wu Zheng, Min Wang","doi":"10.1002/adhm.202302484","DOIUrl":null,"url":null,"abstract":"<p>Postoperative recovery of cancer patients can be affected by complications, such as tissue dysfunction or disability caused by tissue resection, and also cancer recurrence resulting from residual cancer cells. Despite impressive progress made for tissue engineering scaffolds that assist tissue regeneration for postoperative cancer patients, the majority of existing tissue engineering scaffolds still lack functions for monitoring and killing residual cancer cells, if there are any, upon their detection. In this study, multifunctional scaffolds that comprise biodegradable nanofibers and core–shell structured microspheres encapsulated with theranostic nanoparticles (NPs) are developed. The multifunctional scaffolds possess an extracellular matrix-like nanofibrous architecture and soft tissue-like mechanical properties, making them excellent tissue engineering patch candidates for assisting in the repair and regeneration of tissues at the cancerous sites after surgery. Furthermore, they are capable of localized delivery of theranostic NPs upon quick degradation of core–shell structured microspheres that contain theranostic NPs. Leveraging on folic acid-mediated ligand-receptor binding, surface-enhanced Raman scattering activity, and near-infrared-responsive photothermal effect of the theranostic gold NPs (AuNPs) delivered locally, the multifunctional scaffolds display excellent active targeting, diagnosis, and photothermal therapy functions for cancer cells, showing great promise for adaptive postoperative cancer management.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"12 32","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adhm.202302484","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Postoperative recovery of cancer patients can be affected by complications, such as tissue dysfunction or disability caused by tissue resection, and also cancer recurrence resulting from residual cancer cells. Despite impressive progress made for tissue engineering scaffolds that assist tissue regeneration for postoperative cancer patients, the majority of existing tissue engineering scaffolds still lack functions for monitoring and killing residual cancer cells, if there are any, upon their detection. In this study, multifunctional scaffolds that comprise biodegradable nanofibers and core–shell structured microspheres encapsulated with theranostic nanoparticles (NPs) are developed. The multifunctional scaffolds possess an extracellular matrix-like nanofibrous architecture and soft tissue-like mechanical properties, making them excellent tissue engineering patch candidates for assisting in the repair and regeneration of tissues at the cancerous sites after surgery. Furthermore, they are capable of localized delivery of theranostic NPs upon quick degradation of core–shell structured microspheres that contain theranostic NPs. Leveraging on folic acid-mediated ligand-receptor binding, surface-enhanced Raman scattering activity, and near-infrared-responsive photothermal effect of the theranostic gold NPs (AuNPs) delivered locally, the multifunctional scaffolds display excellent active targeting, diagnosis, and photothermal therapy functions for cancer cells, showing great promise for adaptive postoperative cancer management.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.