Rotating Factors to Simplify Their Structural Paths.

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Psychometrika Pub Date : 2023-09-01 Epub Date: 2022-07-22 DOI:10.1007/s11336-022-09877-3
Guangjian Zhang, Minami Hattori, Lauren A Trichtinger
{"title":"Rotating Factors to Simplify Their Structural Paths.","authors":"Guangjian Zhang, Minami Hattori, Lauren A Trichtinger","doi":"10.1007/s11336-022-09877-3","DOIUrl":null,"url":null,"abstract":"<p><p>Applications of structural equation modeling (SEM) may encounter issues like inadmissible parameter estimates, nonconvergence, or unsatisfactory model fit. We propose a new factor rotation method that reparameterizes the factor correlation matrix in exploratory factor analysis (EFA) such that factors can be either exogenous or endogenous. The proposed method is an oblique rotation method for EFA, but it allows directional structural paths among factors. We thus referred it to as FSP (factor structural paths) rotation. In particular, we can use FSP rotation to \"translate\" an SEM model to incorporate theoretical expectations on both factor loadings and structural parameters. We illustrate FSP rotation with an empirical example and explore its statistical properties with simulated data. The results include that (1) EFA with FSP rotation tends to fit data better and encounters fewer Heywood cases than SEM does when there are cross-loadings and many small nonzero loadings, (2) FSP rotated parameter estimates are satisfactory for small models, and (3) FSP rotated parameter estimates are more satisfactory for large models when the structural parameter matrices are sparse.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":"88 3","pages":"865-887"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-022-09877-3","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Applications of structural equation modeling (SEM) may encounter issues like inadmissible parameter estimates, nonconvergence, or unsatisfactory model fit. We propose a new factor rotation method that reparameterizes the factor correlation matrix in exploratory factor analysis (EFA) such that factors can be either exogenous or endogenous. The proposed method is an oblique rotation method for EFA, but it allows directional structural paths among factors. We thus referred it to as FSP (factor structural paths) rotation. In particular, we can use FSP rotation to "translate" an SEM model to incorporate theoretical expectations on both factor loadings and structural parameters. We illustrate FSP rotation with an empirical example and explore its statistical properties with simulated data. The results include that (1) EFA with FSP rotation tends to fit data better and encounters fewer Heywood cases than SEM does when there are cross-loadings and many small nonzero loadings, (2) FSP rotated parameter estimates are satisfactory for small models, and (3) FSP rotated parameter estimates are more satisfactory for large models when the structural parameter matrices are sparse.

Abstract Image

旋转因子以简化其结构路径。
结构方程建模(SEM)在应用中可能会遇到参数估计不准、不收敛或模型拟合不理想等问题。我们提出了一种新的因子旋转方法,该方法可以对探索性因子分析(EFA)中的因子相关矩阵进行重新参数化,从而使因子既可以是外生的,也可以是内生的。所提出的方法是 EFA 的斜向旋转方法,但它允许因子之间存在定向结构路径。因此,我们将其称为 FSP(因子结构路径)旋转法。特别是,我们可以使用 FSP 旋转来 "翻译 "一个 SEM 模型,以纳入对因子载荷和结构参数的理论预期。我们用一个经验实例来说明 FSP 旋转,并用模拟数据来探讨其统计特性。结果包括:(1) 当存在交叉负荷和许多小的非零负荷时,与 SEM 相比,使用 FSP 旋转的 EFA 往往能更好地拟合数据,遇到的 Heywood 案例也更少;(2) FSP 旋转的参数估计对小型模型是令人满意的;(3) 当结构参数矩阵稀疏时,FSP 旋转的参数估计对大型模型更令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信