{"title":"Efficacy of novel attention-based gated recurrent units transformer for depression detection using electroencephalogram signals.","authors":"Neha Prerna Tigga, Shruti Garg","doi":"10.1007/s13755-022-00205-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Depression is a global challenge causing psychological and intellectual problems that require efficient diagnosis. Electroencephalogram (EEG) signals represent the functional state of the human brain and can help build an accurate and viable technique for the early prediction and treatment of depression.</p><p><strong>Methods: </strong>An attention-based gated recurrent units transformer (AttGRUT) time-series model is proposed to efficiently identify EEG perturbations in depressive patients. Statistical, spectral and wavelet features were first extracted from the 60-channel EEG signal data. Then, two feature selection techniques, recursive feature elimination and the Boruta algorithm, both with Shapley additive explanations, were utilised for selecting essential features.</p><p><strong>Results: </strong>The proposed model outperformed the two baseline and two hybrid time-series models-long short-term memory (LSTM), gated recurrent units (GRU), convolutional neural network-LSTM (CNN-LSTM), and CNN-GRU-achieving an accuracy of up to 98.67%. Feature selection considerably increased the performance across all time-series models.</p><p><strong>Conclusion: </strong>Based on the obtained results, novel feature selection greatly affected the results of the baseline and hybrid time-series models. The proposed AttGRUT can be implemented and tested in other domains by using different modalities for prediction.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13755-022-00205-8.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"1"},"PeriodicalIF":4.7000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800680/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00205-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Depression is a global challenge causing psychological and intellectual problems that require efficient diagnosis. Electroencephalogram (EEG) signals represent the functional state of the human brain and can help build an accurate and viable technique for the early prediction and treatment of depression.
Methods: An attention-based gated recurrent units transformer (AttGRUT) time-series model is proposed to efficiently identify EEG perturbations in depressive patients. Statistical, spectral and wavelet features were first extracted from the 60-channel EEG signal data. Then, two feature selection techniques, recursive feature elimination and the Boruta algorithm, both with Shapley additive explanations, were utilised for selecting essential features.
Results: The proposed model outperformed the two baseline and two hybrid time-series models-long short-term memory (LSTM), gated recurrent units (GRU), convolutional neural network-LSTM (CNN-LSTM), and CNN-GRU-achieving an accuracy of up to 98.67%. Feature selection considerably increased the performance across all time-series models.
Conclusion: Based on the obtained results, novel feature selection greatly affected the results of the baseline and hybrid time-series models. The proposed AttGRUT can be implemented and tested in other domains by using different modalities for prediction.
Supplementary information: The online version contains supplementary material available at 10.1007/s13755-022-00205-8.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.