Zn deficiency disrupts Cu and S homeostasis in Chlamydomonas resulting in over accumulation of Cu and Cysteine.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Metallomics Pub Date : 2023-07-10 DOI:10.1093/mtomcs/mfad043
Daniela Strenkert, Stefan Schmollinger, Yuntao Hu, Christian Hofmann, Kristen Holbrook, Helen W Liu, Samuel O Purvine, Carrie D Nicora, Si Chen, Mary S Lipton, Trent R Northen, Stephan Clemens, Sabeeha S Merchant
{"title":"Zn deficiency disrupts Cu and S homeostasis in Chlamydomonas resulting in over accumulation of Cu and Cysteine.","authors":"Daniela Strenkert, Stefan Schmollinger, Yuntao Hu, Christian Hofmann, Kristen Holbrook, Helen W Liu, Samuel O Purvine, Carrie D Nicora, Si Chen, Mary S Lipton, Trent R Northen, Stephan Clemens, Sabeeha S Merchant","doi":"10.1093/mtomcs/mfad043","DOIUrl":null,"url":null,"abstract":"<p><p>Growth of Chlamydomonas reinhardtii in zinc (Zn) limited medium leads to disruption of copper (Cu) homeostasis, resulting in up to 40-fold Cu over-accumulation relative to its typical Cu quota. We show that Chlamydomonas controls its Cu quota by balancing Cu import and export, which is disrupted in a Zn deficient cell, thus establishing a mechanistic connection between Cu and Zn homeostasis. Transcriptomics, proteomics and elemental profiling revealed that Zn-limited Chlamydomonas cells up-regulate a subset of genes encoding \"first responder\" proteins involved in sulfur (S) assimilation and consequently accumulate more intracellular S, which is incorporated into L-cysteine, γ-glutamylcysteine, and homocysteine. Most prominently, in the absence of Zn, free L-cysteine is increased ∼80-fold, corresponding to ∼2.8 × 109 molecules/cell. Interestingly, classic S-containing metal binding ligands like glutathione and phytochelatins do not increase. X-ray fluorescence microscopy showed foci of S accumulation in Zn-limited cells that co-localize with Cu, phosphorus and calcium, consistent with Cu-thiol complexes in the acidocalcisome, the site of Cu(I) accumulation. Notably, cells that have been previously starved for Cu do not accumulate S or Cys, causally connecting cysteine synthesis with Cu accumulation. We suggest that cysteine is an in vivo Cu(I) ligand, perhaps ancestral, that buffers cytosolic Cu.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":"15 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfad043","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Growth of Chlamydomonas reinhardtii in zinc (Zn) limited medium leads to disruption of copper (Cu) homeostasis, resulting in up to 40-fold Cu over-accumulation relative to its typical Cu quota. We show that Chlamydomonas controls its Cu quota by balancing Cu import and export, which is disrupted in a Zn deficient cell, thus establishing a mechanistic connection between Cu and Zn homeostasis. Transcriptomics, proteomics and elemental profiling revealed that Zn-limited Chlamydomonas cells up-regulate a subset of genes encoding "first responder" proteins involved in sulfur (S) assimilation and consequently accumulate more intracellular S, which is incorporated into L-cysteine, γ-glutamylcysteine, and homocysteine. Most prominently, in the absence of Zn, free L-cysteine is increased ∼80-fold, corresponding to ∼2.8 × 109 molecules/cell. Interestingly, classic S-containing metal binding ligands like glutathione and phytochelatins do not increase. X-ray fluorescence microscopy showed foci of S accumulation in Zn-limited cells that co-localize with Cu, phosphorus and calcium, consistent with Cu-thiol complexes in the acidocalcisome, the site of Cu(I) accumulation. Notably, cells that have been previously starved for Cu do not accumulate S or Cys, causally connecting cysteine synthesis with Cu accumulation. We suggest that cysteine is an in vivo Cu(I) ligand, perhaps ancestral, that buffers cytosolic Cu.

Zn 缺乏会破坏衣藻中 Cu 和 S 的平衡,导致 Cu 和半胱氨酸过度积累。
莱茵衣藻在锌(Zn)有限的培养基中生长会导致铜(Cu)平衡的破坏,导致铜的过量积累,与典型的铜配额相比,最高可达 40 倍。我们的研究表明,衣藻通过平衡铜的输入和输出来控制其铜配额,这种平衡在缺锌细胞中被破坏,从而建立了铜和锌平衡之间的机理联系。转录组学、蛋白质组学和元素分析表明,锌限制的衣藻细胞会上调编码参与硫(S)同化的 "第一反应器 "蛋白的基因子集,从而在细胞内积累更多的 S,并将其转化为 L-半胱氨酸、γ-谷氨酰半胱氨酸和高半胱氨酸。最显著的是,在缺乏锌的情况下,游离 L-半胱氨酸增加了 80 倍,相当于 2.8 × 109 个分子/细胞。有趣的是,谷胱甘肽和植物螯合素等典型的含 S 金属结合配体并没有增加。X 射线荧光显微镜显示,在锌限制的细胞中存在 S 积累的病灶,这些病灶与铜、磷和钙共定位,与 Cu(I)积累部位--酸性焦糖体中的 Cu-thiol 复合物一致。值得注意的是,先前缺乏 Cu 的细胞不会积累 S 或 Cys,这说明半胱氨酸的合成与 Cu 的积累有因果关系。我们认为,半胱氨酸是一种体内 Cu(I)配体,也许是一种祖传配体,它能缓冲细胞膜 Cu。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metallomics
Metallomics 生物-生化与分子生物学
CiteScore
7.00
自引率
5.90%
发文量
87
审稿时长
1 months
期刊介绍: Global approaches to metals in the biosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信