Eicosapentaenoic acid influences the pathogenesis of Candida albicans in Caenorhabditis elegans via inhibition of hyphal formation and stimulation of the host immune response.
N Z Mokoena, H Steyn, A Hugo, T Dix-Peek, C Dickens, O M N Gcilitshana, O Sebolai, J Albertyn, C H Pohl
{"title":"Eicosapentaenoic acid influences the pathogenesis of Candida albicans in Caenorhabditis elegans via inhibition of hyphal formation and stimulation of the host immune response.","authors":"N Z Mokoena, H Steyn, A Hugo, T Dix-Peek, C Dickens, O M N Gcilitshana, O Sebolai, J Albertyn, C H Pohl","doi":"10.1007/s00430-023-00777-6","DOIUrl":null,"url":null,"abstract":"<p><p>The intake of omega-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA), is associated with health benefits due to its anti-inflammatory properties. This fatty acid also exhibits antifungal properties in vitro. In order to determine if this antifungal property is valid in vivo, we examined how EPA affects Candida albicans pathogenesis in the Caenorhabditis elegans infection model, an alternative to mammalian host models. The nematodes were supplemented with EPA prior to infection, and the influence of EPA on C. elegans lipid metabolism, survival and immune response was studied. In addition, the influence of EPA on hyphal formation in C. albicans was investigated. It was discovered that EPA supplementation changed the lipid composition, but not the unsaturation index of C. elegans by regulating genes involved in fatty acid and eicosanoid production. EPA supplementation also delayed killing of C. elegans by C. albicans due to the inhibition of hyphal formation in vivo, via the action of the eicosanoid metabolite of EPA, 17,18-epoxyeicosatetraenoic acid. Moreover, EPA supplementation also caused differential expression of biofilm-related gene expression in C. albicans and stimulated the immune response of C. elegans. This provides a link between EPA and host susceptibility to microbial infection in this model.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"212 5","pages":"349-368"},"PeriodicalIF":5.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501937/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00430-023-00777-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intake of omega-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA), is associated with health benefits due to its anti-inflammatory properties. This fatty acid also exhibits antifungal properties in vitro. In order to determine if this antifungal property is valid in vivo, we examined how EPA affects Candida albicans pathogenesis in the Caenorhabditis elegans infection model, an alternative to mammalian host models. The nematodes were supplemented with EPA prior to infection, and the influence of EPA on C. elegans lipid metabolism, survival and immune response was studied. In addition, the influence of EPA on hyphal formation in C. albicans was investigated. It was discovered that EPA supplementation changed the lipid composition, but not the unsaturation index of C. elegans by regulating genes involved in fatty acid and eicosanoid production. EPA supplementation also delayed killing of C. elegans by C. albicans due to the inhibition of hyphal formation in vivo, via the action of the eicosanoid metabolite of EPA, 17,18-epoxyeicosatetraenoic acid. Moreover, EPA supplementation also caused differential expression of biofilm-related gene expression in C. albicans and stimulated the immune response of C. elegans. This provides a link between EPA and host susceptibility to microbial infection in this model.
期刊介绍:
Medical Microbiology and Immunology (MMIM) publishes key findings on all aspects of the interrelationship between infectious agents and the immune system of their hosts. The journal´s main focus is original research work on intrinsic, innate or adaptive immune responses to viral, bacterial, fungal and parasitic (protozoan and helminthic) infections and on the virulence of the respective infectious pathogens.
MMIM covers basic, translational as well as clinical research in infectious diseases and infectious disease immunology. Basic research using cell cultures, organoid, and animal models are welcome, provided that the models have a clinical correlate and address a relevant medical question.
The journal also considers manuscripts on the epidemiology of infectious diseases, including the emergence and epidemic spreading of pathogens and the development of resistance to anti-infective therapies, and on novel vaccines and other innovative measurements of prevention.
The following categories of manuscripts will not be considered for publication in MMIM:
submissions of preliminary work, of merely descriptive data sets without investigation of mechanisms or of limited global interest,
manuscripts on existing or novel anti-infective compounds, which focus on pharmaceutical or pharmacological aspects of the drugs,
manuscripts on existing or modified vaccines, unless they report on experimental or clinical efficacy studies or provide new immunological information on their mode of action,
manuscripts on the diagnostics of infectious diseases, unless they offer a novel concept to solve a pending diagnostic problem,
case reports or case series, unless they are embedded in a study that focuses on the anti-infectious immune response and/or on the virulence of a pathogen.