Optimization of solvent evaporation method in liposomal nanocarriers loaded-garlic essential oil (Allium sativum): Based on the encapsulation efficiency, antioxidant capacity, and instability

IF 3.8 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Salar Ali Ahmed, Mahmood Fadhil Saleem, Hamed Hassanzadeh
{"title":"Optimization of solvent evaporation method in liposomal nanocarriers loaded-garlic essential oil (Allium sativum): Based on the encapsulation efficiency, antioxidant capacity, and instability","authors":"Salar Ali Ahmed,&nbsp;Mahmood Fadhil Saleem,&nbsp;Hamed Hassanzadeh","doi":"10.1049/nbt2.12142","DOIUrl":null,"url":null,"abstract":"<p>This study is aimed to optimise the preparation factors, such as sonication time (5–20 min), cholesterol to lecetin ratio (CHLR) (0.2–0.8), and essential oil content (0.1–0.3 g/100 g) in solvent evaporation method for formulation of liposomal nanocarriers containing garlic essential oil (GEO) in order to find the highest encapsulation efficiency and stability with strongest antioxidant and antimicrobial activity. The droplet size, zeta potential, encapsulation efficiency, turbidity, changes in turbidity after storage (as a measure of instability), antioxidant capacity, and antimicrobial activity were measured for all prepared samples of nanoliposome. The sonication time is recognised as the most effective factor on the droplet size, zeta potential, encapsulation efficiency, turbidity, and instability while CHLR was the most effective factor on zeta potential and instability. The content of GEO significantly affected the antioxidant and antimicrobial activity in particular against gram-negative bacteria (<i>Escherichia coli</i>). The results of FTIR based on the identification of functional groups confirmed the presence of GEO in the spectra of the prepared nanoliposome and also it was not observed the interaction between the components of the nanoliposome. The overall optimum conditions were determined by response surface methodology (RSM) as the predicted values of the studied factors (sonication time: 18.99 min, CHLR: 0.59 and content of GEO: 0.3 g/100 g) based on obtaining the highest stability and efficiency as well as strongest antioxidant and antimicrobial activity.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 5","pages":"438-449"},"PeriodicalIF":3.8000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4e/44/NBT2-17-438.PMC10374552.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12142","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

This study is aimed to optimise the preparation factors, such as sonication time (5–20 min), cholesterol to lecetin ratio (CHLR) (0.2–0.8), and essential oil content (0.1–0.3 g/100 g) in solvent evaporation method for formulation of liposomal nanocarriers containing garlic essential oil (GEO) in order to find the highest encapsulation efficiency and stability with strongest antioxidant and antimicrobial activity. The droplet size, zeta potential, encapsulation efficiency, turbidity, changes in turbidity after storage (as a measure of instability), antioxidant capacity, and antimicrobial activity were measured for all prepared samples of nanoliposome. The sonication time is recognised as the most effective factor on the droplet size, zeta potential, encapsulation efficiency, turbidity, and instability while CHLR was the most effective factor on zeta potential and instability. The content of GEO significantly affected the antioxidant and antimicrobial activity in particular against gram-negative bacteria (Escherichia coli). The results of FTIR based on the identification of functional groups confirmed the presence of GEO in the spectra of the prepared nanoliposome and also it was not observed the interaction between the components of the nanoliposome. The overall optimum conditions were determined by response surface methodology (RSM) as the predicted values of the studied factors (sonication time: 18.99 min, CHLR: 0.59 and content of GEO: 0.3 g/100 g) based on obtaining the highest stability and efficiency as well as strongest antioxidant and antimicrobial activity.

Abstract Image

大蒜精油脂质体纳米载体溶剂蒸发法的优化:基于包封效率、抗氧化能力和不稳定性
本研究旨在优化溶剂蒸发法制备大蒜精油(GEO)脂质体纳米载体的制备因素,如超声时间(5-20 min)、胆固醇与卵磷脂比(CHLR)(0.2-0.8)、精油含量(0.1-0.3 g/100 g),以获得包封效率最高、稳定性最强、抗氧化和抗菌活性最强的载体。对所有制备的纳米脂质体样品进行了液滴大小、zeta电位、包封效率、浊度、储存后浊度的变化(作为不稳定性的衡量标准)、抗氧化能力和抗菌活性的测量。超声时间是影响液滴尺寸、zeta电位、包封效率、浊度和不稳定性的最有效因素,而CHLR是影响zeta电位和不稳定性的最有效因素。GEO含量显著影响其抗氧化和抗菌活性,特别是对革兰氏阴性菌(大肠杆菌)的抗氧化和抗菌活性。基于官能团鉴定的FTIR结果证实了所制备的纳米脂质体的光谱中存在GEO,并且未观察到纳米脂质体组分之间的相互作用。通过响应面法(RSM)对各因素(超声时间为18.99 min, CHLR为0.59,GEO含量为0.3 g/100 g)进行预测,以获得最高的稳定性和效率,并获得最强的抗氧化和抗菌活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET nanobiotechnology
IET nanobiotechnology 工程技术-纳米科技
CiteScore
6.20
自引率
4.30%
发文量
34
审稿时长
1 months
期刊介绍: Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level. Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries. IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to: Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques) Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools) Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles) Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance Techniques for probing cell physiology, cell adhesion sites and cell-cell communication Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology Societal issues such as health and the environment Special issues. Call for papers: Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信