{"title":"Myricetin Protects Against Rat Intervertebral Disc Degeneration Partly Through the Nrf2/HO-1/NF-κB Signaling Pathway","authors":"Tian Mao, Junchi Fan","doi":"10.1007/s10528-023-10456-z","DOIUrl":null,"url":null,"abstract":"<div><p>Intervertebral disc (IVD) degeneration (IDD) is a prevalent musculoskeletal disorder. Nucleus pulposus cells (NPCs) play a significant role in the normal functioning of the IVD. Myricetin is an agent that exerts anti-inflammatory and antioxidant effects in various pathological conditions. Here, we investigated the ameliorative effects of myricetin on the IVD degeneration. NPCs were obtained from the IVD of rats, and were treated with myricetin (0, 5, 10, 15, 20 μM) for 24 h before 20 ng/mL IL-1β stimulation. RT-qPCR, western blotting, and ELISA were applied to evaluate the levels of inflammatory factors (iNOS, COX-2, TNF-α, IL-6, PGE2, and Nitrite) and extracellular matrix (ECM)-associated components (MMP13, ADAMTS-5, aggrecan, and collagen II) in NPCs. Activation status of related signaling pathways (NF-κB and Nrf2) was determined using western blotting and immunofluorescence staining. Experimental rat models of IDD were established using a needle puncture method. Myricetin (20 mg/kg) was administrated intraperitoneally, and the degeneration was evaluated using histopathological analysis. Myricetin treatment attenuated the IL-1β-induced production of inflammatory factors in NPCs. Downregulation of aggrecan and collagen II as well as upregulation of MMP-13 and ADAMTS-5 in NPCs caused by IL-1β was reversed by myricetin treatment. Mechanistically, myricetin blocked NF-κB signaling by activation of Nrf2 in IL-1β-stimulated NPCs. Moreover, inhibition of Nrf2 reversed the protective effects of myricetin in NPCs. The in vivo experiments showed that myricetin ameliorated the IDD progression in rats. The present work suggests that Nrf2 is involved in the pathogenesis of IDD and shows the protective effects as well as the underlying mechanism of myricetin on Nrf2 activation in NPCs.</p></div>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":"62 2","pages":"950 - 967"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10528-023-10456-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a prevalent musculoskeletal disorder. Nucleus pulposus cells (NPCs) play a significant role in the normal functioning of the IVD. Myricetin is an agent that exerts anti-inflammatory and antioxidant effects in various pathological conditions. Here, we investigated the ameliorative effects of myricetin on the IVD degeneration. NPCs were obtained from the IVD of rats, and were treated with myricetin (0, 5, 10, 15, 20 μM) for 24 h before 20 ng/mL IL-1β stimulation. RT-qPCR, western blotting, and ELISA were applied to evaluate the levels of inflammatory factors (iNOS, COX-2, TNF-α, IL-6, PGE2, and Nitrite) and extracellular matrix (ECM)-associated components (MMP13, ADAMTS-5, aggrecan, and collagen II) in NPCs. Activation status of related signaling pathways (NF-κB and Nrf2) was determined using western blotting and immunofluorescence staining. Experimental rat models of IDD were established using a needle puncture method. Myricetin (20 mg/kg) was administrated intraperitoneally, and the degeneration was evaluated using histopathological analysis. Myricetin treatment attenuated the IL-1β-induced production of inflammatory factors in NPCs. Downregulation of aggrecan and collagen II as well as upregulation of MMP-13 and ADAMTS-5 in NPCs caused by IL-1β was reversed by myricetin treatment. Mechanistically, myricetin blocked NF-κB signaling by activation of Nrf2 in IL-1β-stimulated NPCs. Moreover, inhibition of Nrf2 reversed the protective effects of myricetin in NPCs. The in vivo experiments showed that myricetin ameliorated the IDD progression in rats. The present work suggests that Nrf2 is involved in the pathogenesis of IDD and shows the protective effects as well as the underlying mechanism of myricetin on Nrf2 activation in NPCs.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.