Apilactobacillus kunkeei releases RNA-associated membrane vesicles and proteinaceous nanoparticles.

microLife Pub Date : 2023-01-01 DOI:10.1093/femsml/uqad037
Christian Seeger, Karl Dyrhage, Kristina Näslund, Siv G E Andersson
{"title":"<i>Apilactobacillus kunkeei</i> releases RNA-associated membrane vesicles and proteinaceous nanoparticles.","authors":"Christian Seeger,&nbsp;Karl Dyrhage,&nbsp;Kristina Näslund,&nbsp;Siv G E Andersson","doi":"10.1093/femsml/uqad037","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellularly released particles, including membrane vesicles, have increasingly been recognized as important for bacterial community functions and host-interaction processes, but their compositions and functional roles differ between species and also between strains of the same species. In this study, we have determined the composition of membrane vesicles and protein particles identified in the cell-free pellets of two strains of <i>Apilactobacillus kunkeei</i>, a defensive symbiont of honeybees. The membrane vesicles were separated from the extracellular particles using density gradient ultracentrifugation. The peaks of the RNA and protein distributions were separated from each other and the highest concentration of RNA was observed in the fractions that contained the membrane vesicles while the highest protein concentration coincided with the fractions that contained extracellular particles. A comparative proteomics analysis by LC-MS/MS showed that 37 proteins with type-I signal peptides were consistently identified across the fractionated samples obtained from the cell-free pellets, of which 29 were orthologs detected in both strains. Functional predictions of the extracellular proteins revealed the presence of glycoside hydrolases, glycosyltransferases, giant proteins and peptidases. The extracellular transcriptomes mapped to a broad set of genes with a similar functional profile as the whole cell transcriptome. This study provides insights into the composition of membrane vesicles and extracellular proteins of a bee-associated symbiont.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496945/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsml/uqad037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellularly released particles, including membrane vesicles, have increasingly been recognized as important for bacterial community functions and host-interaction processes, but their compositions and functional roles differ between species and also between strains of the same species. In this study, we have determined the composition of membrane vesicles and protein particles identified in the cell-free pellets of two strains of Apilactobacillus kunkeei, a defensive symbiont of honeybees. The membrane vesicles were separated from the extracellular particles using density gradient ultracentrifugation. The peaks of the RNA and protein distributions were separated from each other and the highest concentration of RNA was observed in the fractions that contained the membrane vesicles while the highest protein concentration coincided with the fractions that contained extracellular particles. A comparative proteomics analysis by LC-MS/MS showed that 37 proteins with type-I signal peptides were consistently identified across the fractionated samples obtained from the cell-free pellets, of which 29 were orthologs detected in both strains. Functional predictions of the extracellular proteins revealed the presence of glycoside hydrolases, glycosyltransferases, giant proteins and peptidases. The extracellular transcriptomes mapped to a broad set of genes with a similar functional profile as the whole cell transcriptome. This study provides insights into the composition of membrane vesicles and extracellular proteins of a bee-associated symbiont.

Abstract Image

Abstract Image

Abstract Image

昆基芽孢杆菌释放rna相关的膜囊泡和蛋白质纳米颗粒。
细胞外释放颗粒,包括膜囊泡,已经越来越多地被认为是细菌群落功能和宿主相互作用过程的重要组成部分,但它们的组成和功能作用在物种之间以及同一物种的菌株之间存在差异。在这项研究中,我们已经确定了膜囊泡的组成和蛋白质颗粒鉴定的两株昆基芽胞杆菌,蜜蜂的防御性共生体无细胞颗粒。利用密度梯度超离心将膜泡与细胞外颗粒分离。RNA和蛋白质的分布峰相互分离,RNA的最高浓度出现在含有膜囊泡的部分,而蛋白质的最高浓度出现在含有细胞外颗粒的部分。LC-MS/MS比较蛋白质组学分析表明,在分离样品中一致鉴定出37种具有i型信号肽的蛋白,其中29种在两种菌株中均检测到同源蛋白。细胞外蛋白的功能预测显示存在糖苷水解酶、糖基转移酶、巨蛋白和肽酶。细胞外转录组映射到一组广泛的基因,与整个细胞转录组具有相似的功能。本研究为蜜蜂相关共生体的膜囊泡和细胞外蛋白的组成提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信