Concepts require flexible grounding

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Guy Dove
{"title":"Concepts require flexible grounding","authors":"Guy Dove","doi":"10.1016/j.bandl.2023.105322","DOIUrl":null,"url":null,"abstract":"<div><p>Research on semantic memory has a problem. On the one hand, a robust body of evidence implicates sensorimotor regions in conceptual processing. On the other hand, a different body of evidence implicates a modality independent semantic system. The standard solution to this tension is to posit a hub-and-spoke system with modality independent hubs and modality specific spokes. In this paper, I argue in support of an alternative view of grounding which remains committed to neural reenactment but emphasizes the multimodal and multilevel nature of the semantic system. This view is built upon the recognition that abstraction is a design feature of concepts. Semantic memory employs hierarchically structured representations to capture different degrees of abstraction. Grounding does not work the way that many embodied approaches have assumed.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093934X23001013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Research on semantic memory has a problem. On the one hand, a robust body of evidence implicates sensorimotor regions in conceptual processing. On the other hand, a different body of evidence implicates a modality independent semantic system. The standard solution to this tension is to posit a hub-and-spoke system with modality independent hubs and modality specific spokes. In this paper, I argue in support of an alternative view of grounding which remains committed to neural reenactment but emphasizes the multimodal and multilevel nature of the semantic system. This view is built upon the recognition that abstraction is a design feature of concepts. Semantic memory employs hierarchically structured representations to capture different degrees of abstraction. Grounding does not work the way that many embodied approaches have assumed.

概念需要灵活的接地。
对语义记忆的研究存在一个问题。一方面,大量证据表明感觉运动区域参与了概念处理。另一方面,不同的证据体暗示了一个模态独立的语义系统。这种紧张关系的标准解决方案是建立一个具有模态独立轮毂和模态特定轮辐的轮辐系统。在本文中,我支持另一种基础观点,该观点仍然致力于神经再现,但强调语义系统的多模式和多层次性质。这种观点是建立在认识到抽象是概念的设计特征的基础上的。语义记忆采用分层结构的表示来捕捉不同程度的抽象。根植并不像许多具体方法所设想的那样起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信