{"title":"Intestinal expression patterns of transcription factors and markers for interstitial cells in the larval zebrafish","authors":"Masataka Nikaido, Ayaka Shirai, Yumiko Mizumaki, Shuji Shigenobu, Naoto Ueno, Kohei Hatta","doi":"10.1111/dgd.12878","DOIUrl":null,"url":null,"abstract":"<p>For the digestion of food, it is important for the gut to be differentiated regionally and to have proper motor control. However, the number of transcription factors that regulate its development is still limited. Meanwhile, the interstitial cells of the gastrointestinal (GI) tract are necessary for intestinal motility in addition to the enteric nervous system. There are anoctamine1 (Ano1)-positive and platelet-derived growth factor receptor α (Pdgfra)-positive interstitial cells in mammal, but Pdgfra-positive cells have not been reported in the zebrafish. To identify new transcription factors involved in GI tract development, we used RNA sequencing comparing between larval and adult gut. We isolated 40 transcription factors that were more highly expressed in the larval gut. We demonstrated expression patterns of the 13 genes, 7 of which were newly found to be expressed in the zebrafish larval gut. Six of the 13 genes encode nuclear receptors. The <i>osr2</i> is expressed in the anterior part, while <i>foxP4</i> in its distal part. Also, we reported the expression pattern of <i>pdgfra</i> for the first time in the larval zebrafish gut. Our data provide fundamental knowledge for studying vertebrate gut regionalization and motility by live imaging using zebrafish.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 7","pages":"418-428"},"PeriodicalIF":1.7000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Growth & Differentiation","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/dgd.12878","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
For the digestion of food, it is important for the gut to be differentiated regionally and to have proper motor control. However, the number of transcription factors that regulate its development is still limited. Meanwhile, the interstitial cells of the gastrointestinal (GI) tract are necessary for intestinal motility in addition to the enteric nervous system. There are anoctamine1 (Ano1)-positive and platelet-derived growth factor receptor α (Pdgfra)-positive interstitial cells in mammal, but Pdgfra-positive cells have not been reported in the zebrafish. To identify new transcription factors involved in GI tract development, we used RNA sequencing comparing between larval and adult gut. We isolated 40 transcription factors that were more highly expressed in the larval gut. We demonstrated expression patterns of the 13 genes, 7 of which were newly found to be expressed in the zebrafish larval gut. Six of the 13 genes encode nuclear receptors. The osr2 is expressed in the anterior part, while foxP4 in its distal part. Also, we reported the expression pattern of pdgfra for the first time in the larval zebrafish gut. Our data provide fundamental knowledge for studying vertebrate gut regionalization and motility by live imaging using zebrafish.
期刊介绍:
Development Growth & Differentiation (DGD) publishes three types of articles: original, resource, and review papers.
Original papers are on any subjects having a context in development, growth, and differentiation processes in animals, plants, and microorganisms, dealing with molecular, genetic, cellular and organismal phenomena including metamorphosis and regeneration, while using experimental, theoretical, and bioinformatic approaches. Papers on other related fields are also welcome, such as stem cell biology, genomics, neuroscience, Evodevo, Ecodevo, and medical science as well as related methodology (new or revised techniques) and bioresources.
Resource papers describe a dataset, such as whole genome sequences and expressed sequence tags (ESTs), with some biological insights, which should be valuable for studying the subjects as mentioned above.
Submission of review papers is also encouraged, especially those providing a new scope based on the authors’ own study, or a summarization of their study series.