{"title":"Hyperviscosity syndromes; hemorheology for physicians and the use of microfluidic devices.","authors":"Jamie O Musick, Kirby S Fibben, Wilbur A Lam","doi":"10.1097/MOH.0000000000000735","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Hyperviscosity syndromes can lead to significant morbidity and mortality. Existing methods to measure microcirculatory rheology are not readily available and limited in relevance and accuracy at this level. In this review, we review selected hyperviscosity syndromes and the advancement of their knowledge using microfluidic platforms.</p><p><strong>Recent findings: </strong>Viscosity changes drastically at the microvascular level as the physical properties of the cells themselves become the major determinants of resistance to blood flow. Current, outdated viscosity measurements only quantify whole blood or serum. Changes in blood composition, cell number, or the physical properties themselves lead to increased blood viscosity. Given the significant morbidity and mortality from hyperviscosity syndromes, new biophysical tools are needed and being developed to study microvascular biophysical and hemodynamic conditions at this microvascular level to help predict those at risk and guide therapeutic treatment.</p><p><strong>Summary: </strong>The use of 'lab-on-a-chip' technology continues to rise to relevance with point of care, personalized testing and medicine as customizable microfluidic platforms enable independent control of many in vivo factors and are a powerful tool to study microcirculatory hemorheology.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547821/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOH.0000000000000735","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: Hyperviscosity syndromes can lead to significant morbidity and mortality. Existing methods to measure microcirculatory rheology are not readily available and limited in relevance and accuracy at this level. In this review, we review selected hyperviscosity syndromes and the advancement of their knowledge using microfluidic platforms.
Recent findings: Viscosity changes drastically at the microvascular level as the physical properties of the cells themselves become the major determinants of resistance to blood flow. Current, outdated viscosity measurements only quantify whole blood or serum. Changes in blood composition, cell number, or the physical properties themselves lead to increased blood viscosity. Given the significant morbidity and mortality from hyperviscosity syndromes, new biophysical tools are needed and being developed to study microvascular biophysical and hemodynamic conditions at this microvascular level to help predict those at risk and guide therapeutic treatment.
Summary: The use of 'lab-on-a-chip' technology continues to rise to relevance with point of care, personalized testing and medicine as customizable microfluidic platforms enable independent control of many in vivo factors and are a powerful tool to study microcirculatory hemorheology.
期刊介绍:
Current Opinion in Hematology is an easy-to-digest bimonthly journal covering the most interesting and important advances in the field of hematology. Its hand-picked selection of editors ensure the highest quality selection of unbiased review articles on themes from nine key subject areas, including myeloid biology, Vascular biology, hematopoiesis and erythroid system and its diseases.