Mate calling alters expression of neuropeptide, cocaine- and amphetamine- regulated transcript (CART) in the brain of male frog Microhyla nilphamariensis
{"title":"Mate calling alters expression of neuropeptide, cocaine- and amphetamine- regulated transcript (CART) in the brain of male frog Microhyla nilphamariensis","authors":"Shobha Bhargava , Ketaki Shetye , Swapnil Shewale , Nitin Sawant , Sneha Sagarkar , Nishikant Subhedar","doi":"10.1016/j.npep.2023.102380","DOIUrl":null,"url":null,"abstract":"<div><p><span>Croaking is a unique component of reproductive behaviour<span> in amphibians which plays a key role in intraspecies communication and mate evaluation. While gonadal hormones are known to induce croaking, central regulation of sound production is less studied. Croaking is a dramatic, transient activity that sets apart an animal from non-croaking individuals. Herein, we aim at examining the profile of the neuropeptide cocaine- and amphetamine-regulated transcript (CART) in actively croaking and non-croaking frog </span></span><em>Microhyla nilphamariensis</em><span><span>. In anurans, this peptide is widely expressed in the areas inclusive of acoustical nuclei as well as areas relevant to reproduction. CART immunoreactivity<span><span> was far more in the preoptic area (POA), anteroventral </span>tegmentum (AV), ventral </span></span>hypothalamus<span><span><span> (vHy), pineal (P) and pituitary gland of croaking frog compared to non-croaking animals. On similar lines, tissue fragments collected from the mid region of the brain inclusive of POA, vHy, AV, pineal and pituitary gland of croaking frog showed upregulation of CART mRNA. However, CART immunoreactivity in the neuronal </span>perikarya of </span>raphe (Ra) was completely abolished during croaking activity. The data suggest that CART signaling in the brain may be an important player in mediating croaking behaviour in the frog.</span></span></p></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"102 ","pages":"Article 102380"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417923000616","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Croaking is a unique component of reproductive behaviour in amphibians which plays a key role in intraspecies communication and mate evaluation. While gonadal hormones are known to induce croaking, central regulation of sound production is less studied. Croaking is a dramatic, transient activity that sets apart an animal from non-croaking individuals. Herein, we aim at examining the profile of the neuropeptide cocaine- and amphetamine-regulated transcript (CART) in actively croaking and non-croaking frog Microhyla nilphamariensis. In anurans, this peptide is widely expressed in the areas inclusive of acoustical nuclei as well as areas relevant to reproduction. CART immunoreactivity was far more in the preoptic area (POA), anteroventral tegmentum (AV), ventral hypothalamus (vHy), pineal (P) and pituitary gland of croaking frog compared to non-croaking animals. On similar lines, tissue fragments collected from the mid region of the brain inclusive of POA, vHy, AV, pineal and pituitary gland of croaking frog showed upregulation of CART mRNA. However, CART immunoreactivity in the neuronal perikarya of raphe (Ra) was completely abolished during croaking activity. The data suggest that CART signaling in the brain may be an important player in mediating croaking behaviour in the frog.
期刊介绍:
The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems.
The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.