{"title":"Heat shock response in Sulfolobus acidocaldarius and first implications for cross-stress adaptation","authors":"Arghya Bhowmick , Koustav Bhakta , Mousam Roy , Sayandeep Gupta , Jagriti Das , Shirsha Samanta , Somi Patranabis , Abhrajyoti Ghosh","doi":"10.1016/j.resmic.2023.104106","DOIUrl":null,"url":null,"abstract":"<div><p><span><em>Sulfolobus acidocaldarius</em></span><span><span>, a thermoacidophilic crenarchaeon, frequently encounters temperature fluctuations, </span>oxidative stress<span>, and nutrient limitations in its environment. Here, we employed a high-throughput transcriptomic analysis to examine how the gene expression of </span></span><em>S. acidocaldarius</em><span> changes when exposed to high temperatures (92 °C). The data obtained was subsequently validated using quantitative reverse transcription-PCR (qRT-PCR) analysis. Our particular focus was on genes that are involved in the heat shock response, type-II Toxin-Antitoxin systems, and putative transcription factors. To investigate how </span><em>S. acidocaldarius</em> adapts to multiple stressors, we assessed the expression of these selected genes under oxidative and nutrient stresses using qRT-PCR analysis. The results demonstrated that the gene <em>thβ</em><span> encoding the β subunit of the thermosome, as well as </span><em>hsp14</em> and <em>hsp20</em><span><span>, play crucial roles in the majority of stress conditions. Furthermore, we observed overexpression of at least eight different TA pairs belonging to the type II TA systems under all stress conditions. Additionally, four common transcription factors: FadR, TFEβ, </span>CRISPR<span> loci binding protein, and HTH family protein were consistently overexpressed across all stress conditions, indicating their significant role in managing stress. Overall, this work provides the first insight into molecular players involved in the cross-stress adaptation of </span></span><em>S. acidocaldarius</em>.</p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"174 8","pages":"Article 104106"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250823000815","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Sulfolobus acidocaldarius, a thermoacidophilic crenarchaeon, frequently encounters temperature fluctuations, oxidative stress, and nutrient limitations in its environment. Here, we employed a high-throughput transcriptomic analysis to examine how the gene expression of S. acidocaldarius changes when exposed to high temperatures (92 °C). The data obtained was subsequently validated using quantitative reverse transcription-PCR (qRT-PCR) analysis. Our particular focus was on genes that are involved in the heat shock response, type-II Toxin-Antitoxin systems, and putative transcription factors. To investigate how S. acidocaldarius adapts to multiple stressors, we assessed the expression of these selected genes under oxidative and nutrient stresses using qRT-PCR analysis. The results demonstrated that the gene thβ encoding the β subunit of the thermosome, as well as hsp14 and hsp20, play crucial roles in the majority of stress conditions. Furthermore, we observed overexpression of at least eight different TA pairs belonging to the type II TA systems under all stress conditions. Additionally, four common transcription factors: FadR, TFEβ, CRISPR loci binding protein, and HTH family protein were consistently overexpressed across all stress conditions, indicating their significant role in managing stress. Overall, this work provides the first insight into molecular players involved in the cross-stress adaptation of S. acidocaldarius.
期刊介绍:
Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.