Camila Oses, María Cecilia De Rossi, Luciana Bruno, Paula Verneri, María Candelaria Diaz, Belén Benítez, Alejandra Guberman, Valeria Levi
{"title":"From the membrane to the nucleus: mechanical signals and transcription regulation.","authors":"Camila Oses, María Cecilia De Rossi, Luciana Bruno, Paula Verneri, María Candelaria Diaz, Belén Benítez, Alejandra Guberman, Valeria Levi","doi":"10.1007/s12551-023-01103-3","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical forces drive and modulate a wide variety of processes in eukaryotic cells including those occurring in the nucleus. Relevantly, forces are fundamental during development since they guide lineage specifications of embryonic stem cells. A sophisticated macromolecular machinery transduces mechanical stimuli received at the cell surface into a biochemical output; a key component in this mechanical communication is the cytoskeleton, a complex network of biofilaments in constant remodeling that links the cell membrane to the nuclear envelope. Recent evidence highlights that forces transmitted through the cytoskeleton directly affect the organization of chromatin and the accessibility of transcription-related molecules to their targets in the DNA. Consequently, mechanical forces can directly modulate transcription and change gene expression programs. Here, we will revise the biophysical toolbox involved in the mechanical communication with the cell nucleus and discuss how mechanical forces impact on the organization of this organelle and more specifically, on transcription. We will also discuss how live-cell fluorescence imaging is producing exquisite information to understand the mechanical response of cells and to quantify the landscape of interactions of transcription factors with chromatin in embryonic stem cells. These studies are building new biophysical insights that could be fundamental to achieve the goal of manipulating forces to guide cell differentiation in culture systems.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480138/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-023-01103-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanical forces drive and modulate a wide variety of processes in eukaryotic cells including those occurring in the nucleus. Relevantly, forces are fundamental during development since they guide lineage specifications of embryonic stem cells. A sophisticated macromolecular machinery transduces mechanical stimuli received at the cell surface into a biochemical output; a key component in this mechanical communication is the cytoskeleton, a complex network of biofilaments in constant remodeling that links the cell membrane to the nuclear envelope. Recent evidence highlights that forces transmitted through the cytoskeleton directly affect the organization of chromatin and the accessibility of transcription-related molecules to their targets in the DNA. Consequently, mechanical forces can directly modulate transcription and change gene expression programs. Here, we will revise the biophysical toolbox involved in the mechanical communication with the cell nucleus and discuss how mechanical forces impact on the organization of this organelle and more specifically, on transcription. We will also discuss how live-cell fluorescence imaging is producing exquisite information to understand the mechanical response of cells and to quantify the landscape of interactions of transcription factors with chromatin in embryonic stem cells. These studies are building new biophysical insights that could be fundamental to achieve the goal of manipulating forces to guide cell differentiation in culture systems.
机械力驱动并调节真核细胞中的各种过程,包括细胞核中发生的过程。与此相关的是,机械力在胚胎干细胞的发育过程中起着至关重要的作用,因为它们引导着胚胎干细胞的分化。一种复杂的大分子机制将细胞表面接收到的机械刺激转化为生化输出;这种机械通信的一个关键组成部分是细胞骨架,它是一个由不断重塑的生物丝组成的复杂网络,将细胞膜与核膜连接起来。最近的证据表明,通过细胞骨架传递的力会直接影响染色质的组织以及转录相关分子与 DNA 中目标的可及性。因此,机械力可以直接调节转录并改变基因表达程序。在这里,我们将重新审视与细胞核进行机械交流所涉及的生物物理工具箱,并讨论机械力如何影响细胞核的组织,更具体地说,是如何影响转录。我们还将讨论活细胞荧光成像如何产生精细信息,以了解细胞的机械反应,并量化胚胎干细胞中转录因子与染色质的相互作用。这些研究正在建立新的生物物理见解,对于实现操纵力量引导培养系统中细胞分化的目标至关重要。
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation