Diversity and Evolution of Highly Repetitive DNA Sequences Constituting Chromosome Site-Specific Heterochromatin in Two Gerbillinae Species.

IF 1.7 4区 生物学 Q4 CELL BIOLOGY
Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2023-09-14 DOI:10.1159/000533716
Yoshinobu Uno, Kazumi Matsubara, Jun Inoue, Johji Inazawa, Akio Shinohara, Chihiro Koshimoto, Kenji Ichiyanagi, Yoichi Matsuda
{"title":"Diversity and Evolution of Highly Repetitive DNA Sequences Constituting Chromosome Site-Specific Heterochromatin in Two Gerbillinae Species.","authors":"Yoshinobu Uno, Kazumi Matsubara, Jun Inoue, Johji Inazawa, Akio Shinohara, Chihiro Koshimoto, Kenji Ichiyanagi, Yoichi Matsuda","doi":"10.1159/000533716","DOIUrl":null,"url":null,"abstract":"<p><p>Constitutive heterochromatin, consisting of repetitive sequences, diverges very rapidly; therefore, its nucleotide sequences and chromosomal distributions are often largely different, even between closely related species. The chromosome C-banding patterns of two Gerbillinae species, Meriones unguiculatus and Gerbillus perpallidus, vary greatly, even though they belong to the same subfamily. To understand the evolution of C-positive heterochromatin in these species, we isolated highly repetitive sequences, determined their nucleotide sequences, and characterized them using chromosomal and filter hybridization. We obtained a centromeric repeat (MUN-HaeIII) and a chromosome 13-specific repeat (MUN-EcoRI) from M. unguiculatus. We also isolated a centromeric/pericentromeric repeat (GPE-MBD) and an interspersed-type repeat that was predominantly amplified in the X and Y chromosomes (GPE-EcoRI) from G. perpallidus. GPE-MBD was found to contain a 17-bp motif that is essential for binding to the centromere-associated protein CENP-B. This indicates that it may play a role in the formation of a specified structure and/or function of centromeres. The nucleotide sequences of the three sequence families, except GPE-EcoRI, were conserved only in Gerbillinae. GPE-EcoRI was derived from the long interspersed nuclear elements 1 retrotransposon and showed sequence homology throughout Muridae and Cricetidae species, indicating that the repeat sequence occurred at least in the common ancestor of Muridae and Cricetidae. Due to a lack of assembly data of highly repetitive sequences constituting heterochromatin in whole-genome sequences of vertebrate species published to date, the knowledge obtained in this study provides useful information for a deep understanding of the evolution of repetitive sequences in not only rodents but also in mammals.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetic and Genome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000533716","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Constitutive heterochromatin, consisting of repetitive sequences, diverges very rapidly; therefore, its nucleotide sequences and chromosomal distributions are often largely different, even between closely related species. The chromosome C-banding patterns of two Gerbillinae species, Meriones unguiculatus and Gerbillus perpallidus, vary greatly, even though they belong to the same subfamily. To understand the evolution of C-positive heterochromatin in these species, we isolated highly repetitive sequences, determined their nucleotide sequences, and characterized them using chromosomal and filter hybridization. We obtained a centromeric repeat (MUN-HaeIII) and a chromosome 13-specific repeat (MUN-EcoRI) from M. unguiculatus. We also isolated a centromeric/pericentromeric repeat (GPE-MBD) and an interspersed-type repeat that was predominantly amplified in the X and Y chromosomes (GPE-EcoRI) from G. perpallidus. GPE-MBD was found to contain a 17-bp motif that is essential for binding to the centromere-associated protein CENP-B. This indicates that it may play a role in the formation of a specified structure and/or function of centromeres. The nucleotide sequences of the three sequence families, except GPE-EcoRI, were conserved only in Gerbillinae. GPE-EcoRI was derived from the long interspersed nuclear elements 1 retrotransposon and showed sequence homology throughout Muridae and Cricetidae species, indicating that the repeat sequence occurred at least in the common ancestor of Muridae and Cricetidae. Due to a lack of assembly data of highly repetitive sequences constituting heterochromatin in whole-genome sequences of vertebrate species published to date, the knowledge obtained in this study provides useful information for a deep understanding of the evolution of repetitive sequences in not only rodents but also in mammals.

构成两种沙鼠染色体位点特异性异染色质的高度重复DNA序列的多样性和进化
组成型异染色质,由重复序列组成,分化非常迅速;因此,它的核苷酸序列和染色体分布往往有很大的不同,甚至在密切相关的物种之间。两种沙billinae物种Meriones unguiculatus和Gerbillus perpallidus虽然属于同一亚科,但染色体c带模式差异很大。为了了解这些物种中c阳性异染色质的进化,我们分离了高度重复的序列,确定了它们的核苷酸序列,并使用染色体和过滤杂交对它们进行了表征。我们获得了一个着丝粒重复序列(MUN-HaeIII)和一个13号染色体特异性重复序列(MUN-EcoRI)。我们还分离出了一个着丝粒/周中心重复序列(GPE-MBD)和一个主要在X和Y染色体上扩增的散布型重复序列(GPE-EcoRI)。发现GPE-MBD含有一个17 bp的基序,该基序对于与着丝粒相关蛋白CENP-B结合至关重要。这表明它可能在着丝粒的特定结构和/或功能的形成中起作用。除GPE-EcoRI外,三个序列家族的核苷酸序列仅在Gerbillinae中保守。GPE-EcoRI来源于长错落的核元件1反转录转座子,序列在鼠科和蟋蟀科物种中具有同源性,表明该重复序列至少出现在鼠科和蟋蟀科的共同祖先中。由于迄今为止发表的脊椎动物物种全基因组序列中构成异染色质的高度重复序列的组装数据缺乏,本研究获得的知识为深入了解啮齿动物和哺乳动物重复序列的进化提供了有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytogenetic and Genome Research
Cytogenetic and Genome Research 生物-细胞生物学
CiteScore
3.10
自引率
5.90%
发文量
25
审稿时长
1 months
期刊介绍: During the last decades, ''Cytogenetic and Genome Research'' has been the leading forum for original reports and reviews in human and animal cytogenetics, including molecular, clinical and comparative cytogenetics. In recent years, most of its papers have centered on genome research, including gene cloning and sequencing, gene mapping, gene regulation and expression, cancer genetics, comparative genetics, gene linkage and related areas. The journal also publishes key papers on chromosome aberrations in somatic, meiotic and malignant cells. Its scope has expanded to include studies on invertebrate and plant cytogenetics and genomics. Also featured are the vast majority of the reports of the International Workshops on Human Chromosome Mapping, the reports of international human and animal chromosome nomenclature committees, and proceedings of the American and European cytogenetic conferences and other events. In addition to regular issues, the journal has been publishing since 2002 a series of topical issues on a broad variety of themes from cytogenetic and genome research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信