Recognition factors of Dolichos biflorus agglutinin (DBA) and their accommodation sites.

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Albert M Wu, Anna Dudek, Yung Liang Chen
{"title":"Recognition factors of Dolichos biflorus agglutinin (DBA) and their accommodation sites.","authors":"Albert M Wu,&nbsp;Anna Dudek,&nbsp;Yung Liang Chen","doi":"10.1007/s10719-023-10118-7","DOIUrl":null,"url":null,"abstract":"<p><p>Dolichos biflorus agglutinin (DBA) is one of the well known plant lectins that are widely used in clinical serology to differentiate human blood group A<sub>1</sub> and A<sub>2</sub> erythrocytes and also applied to glycobiology. However, the knowledge of recognition factors of polyvalent (super) glycotopes in glycans and the roles of functional group and epimer in monosaccharide (sub-monosaccharide recognition factor) have not been well established. The size and shape of the recognition (combining) site of DBA has not been clearly defined. In this study, many importnat recognition factors of DBA-glycan binding were characterized by our established enzyme-linked lectinosorbent (ELLSA) and inhibition assays. The results of these assays showed that the intensity profile of the recognition factors for the major combining site of DBA was expressed by Mass relative potency (Mass R.P.) and shown by decreasing order of high density of polyvalent GalNAcα1 → (super glycotopes, 3.7 × 10<sup>3</sup>) >> the corresponding β anomers >> monomeric GalNAcα1 → related glycotopes (GalNAc as 1.0) >> their GalNAc β-anomers >> Gal (absence of NHCH<sub>3</sub>CO at carbon-2 of GAlNAc) and GlcNAc (different epimer of Carbon-4 in GalNAc). From the all data available, it is proposed that the combining site of DBA should consist of a small cavity shape as major site and most complementary to monomeric GalNAcα → located at both terminal reducing end (Tn) and nonreducing end of glycan chains, and with a wide and broad area as subsite to accomodate from mono- to tetra-saccharides (GalNAcβ, Galβ1 → 3/4GlcNAc, lFuc1 → 2Galβ1 → 3/4GlcNAc, GalNAcβ1 → 3Galα1 → 4Galβ1 → 4Glc) at the nonreducing side. In this study, it has provided the most (comprehensive) recognition knowledge of DBA-glycan interactions at the factors of glycotope, super glycotope/sub-monosaccharide levels. Thus, it should expand and upgrade the conventional concept of the combining (recognition) site of DBA since 1980s.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycoconjugate Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10719-023-10118-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dolichos biflorus agglutinin (DBA) is one of the well known plant lectins that are widely used in clinical serology to differentiate human blood group A1 and A2 erythrocytes and also applied to glycobiology. However, the knowledge of recognition factors of polyvalent (super) glycotopes in glycans and the roles of functional group and epimer in monosaccharide (sub-monosaccharide recognition factor) have not been well established. The size and shape of the recognition (combining) site of DBA has not been clearly defined. In this study, many importnat recognition factors of DBA-glycan binding were characterized by our established enzyme-linked lectinosorbent (ELLSA) and inhibition assays. The results of these assays showed that the intensity profile of the recognition factors for the major combining site of DBA was expressed by Mass relative potency (Mass R.P.) and shown by decreasing order of high density of polyvalent GalNAcα1 → (super glycotopes, 3.7 × 103) >> the corresponding β anomers >> monomeric GalNAcα1 → related glycotopes (GalNAc as 1.0) >> their GalNAc β-anomers >> Gal (absence of NHCH3CO at carbon-2 of GAlNAc) and GlcNAc (different epimer of Carbon-4 in GalNAc). From the all data available, it is proposed that the combining site of DBA should consist of a small cavity shape as major site and most complementary to monomeric GalNAcα → located at both terminal reducing end (Tn) and nonreducing end of glycan chains, and with a wide and broad area as subsite to accomodate from mono- to tetra-saccharides (GalNAcβ, Galβ1 → 3/4GlcNAc, lFuc1 → 2Galβ1 → 3/4GlcNAc, GalNAcβ1 → 3Galα1 → 4Galβ1 → 4Glc) at the nonreducing side. In this study, it has provided the most (comprehensive) recognition knowledge of DBA-glycan interactions at the factors of glycotope, super glycotope/sub-monosaccharide levels. Thus, it should expand and upgrade the conventional concept of the combining (recognition) site of DBA since 1980s.

Abstract Image

芍药凝集素(DBA)的识别因子及其调节位点。
芍药凝集素(Dolichos biflorus agglutinin, DBA)是一种著名的植物凝集素,在临床血清学中广泛用于区分人A1和A2血型红细胞,并应用于糖生物学。然而,对多糖中多价(超)糖基的识别因子以及功能基团和表聚体在单糖(亚单糖识别因子)中的作用的认识尚未很好地建立。DBA的识别(结合)位点的大小和形状还没有明确的定义。在本研究中,我们建立的酶联凝集剂(ELLSA)和抑制实验表征了许多重要的dba -聚糖结合识别因子。这些化验的结果表明,强度轮廓的识别因素的主要结合点DBA是表达的质量相对效力质量(r)和显示减少的高密度多价GalNAcα(1→(超级glycotopes, 3.7×103)> >相应的β异头物> >单体的GalNAcα(1→相关glycotopes (GalNAc 1.0) > >他们GalNAcβ-anomers > >加(没有在碳2 NHCH3CO GalNAc)和GlcNAc Carbon-4 GalNAc)的(不同的差向异构体。从所有可用的数据,提出了结合部位的DBA应该包含一个小腔形状作为主要网站最互补的单体的GalNAcα→位于两个终端减少结束(Tn)和nonreducing多糖链,和一个广泛的和广泛的区域作为子从mono -容纳tetra-saccharides (GalNAcβ,加β(1→3/4GlcNAc, lFuc1→2加β1→3/4GlcNAc, GalNAcβ(1→3加α1→4加β(1→4、相关)在nonreducing端。本研究在糖基、超糖基/亚单糖水平上提供了最(全面)的对dba -聚糖相互作用的认识。因此,应该对20世纪80年代以来DBA组合(识别)位点的传统概念进行扩展和升级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Glycoconjugate Journal
Glycoconjugate Journal 生物-生化与分子生物学
CiteScore
6.00
自引率
3.30%
发文量
63
审稿时长
1 months
期刊介绍: Glycoconjugate Journal publishes articles and reviews on all areas concerned with: function, composition, structure, biosynthesis, degradation, interactions, recognition and chemo-enzymatic synthesis of glycoconjugates (glycoproteins, glycolipids, oligosaccharides, polysaccharides and proteoglycans), biochemistry, molecular biology, biotechnology, immunology and cell biology of glycoconjugates, aspects related to disease processes (immunological, inflammatory, arthritic infections, metabolic disorders, malignancy, neurological disorders), structural and functional glycomics, glycoimmunology, glycovaccines, organic synthesis of glycoconjugates and the development of methodologies if biologically relevant, glycosylation changes in disease if focused on either the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism, articles on the effects of toxicological agents (alcohol, tobacco, narcotics, environmental agents) on glycosylation, and the use of glycotherapeutics. Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization, which is responsible for organizing the biennial International Symposia on Glycoconjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信