Renae Mannion, Amritha Harikumar, Fernanda Morales-Calva, Stephanie L. Leal
{"title":"A novel face-name mnemonic discrimination task with naturalistic stimuli","authors":"Renae Mannion, Amritha Harikumar, Fernanda Morales-Calva, Stephanie L. Leal","doi":"10.1016/j.neuropsychologia.2023.108678","DOIUrl":null,"url":null,"abstract":"<div><p>Difficulty remembering faces and names is a common struggle for many people and gets more difficult as we age. Subtle changes in appearance from day to day, common facial characteristics across individuals, and overlap of names may contribute to the difficulty of learning face-name associations. Computational models suggest the hippocampus plays a key role in reducing interference across experiences with overlapping information by performing pattern separation, which enables us to encode similar experiences as distinct from one another. Thus, given the nature of overlapping features within face-name associative memory, hippocampal pattern separation may be an important underlying mechanism supporting this type of memory. Furthermore, cross-species approaches find that aging is associated with deficits in hippocampal pattern separation. Mnemonic discrimination tasks have been designed to tax hippocampal pattern separation and provide a more sensitive measure of age-related cognitive decline compared to traditional memory tasks. However, traditional face-name associative memory tasks do not parametrically vary overlapping features of faces and names to tax hippocampal pattern separation and often lack naturalistic facial features (e.g., hair, accessories, similarity of features, emotional expressions). Here, we developed a face-name mnemonic discrimination task where we varied face stimuli by similarity, race, sex, and emotional expression as well as the similarity of name stimuli. We tested a sample of healthy young and older adults on this task and found that both age groups showed worsening performance as face-name interference increased. Overall, older adults struggled to remember faces and face-name pairs more than young adults. However, while young adults remembered emotional faces better than neutral faces, older adults selectively remembered positive faces. Thus, the use of a face-name association memory task designed with varying levels of face-name interference as well as the inclusion of naturalistic face stimuli across race, sex, and emotional expressions provides a more nuanced approach relative to traditional face-name association tasks toward understanding age-related changes in memory.</p></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":"189 ","pages":"Article 108678"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychologia","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028393223002129","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Difficulty remembering faces and names is a common struggle for many people and gets more difficult as we age. Subtle changes in appearance from day to day, common facial characteristics across individuals, and overlap of names may contribute to the difficulty of learning face-name associations. Computational models suggest the hippocampus plays a key role in reducing interference across experiences with overlapping information by performing pattern separation, which enables us to encode similar experiences as distinct from one another. Thus, given the nature of overlapping features within face-name associative memory, hippocampal pattern separation may be an important underlying mechanism supporting this type of memory. Furthermore, cross-species approaches find that aging is associated with deficits in hippocampal pattern separation. Mnemonic discrimination tasks have been designed to tax hippocampal pattern separation and provide a more sensitive measure of age-related cognitive decline compared to traditional memory tasks. However, traditional face-name associative memory tasks do not parametrically vary overlapping features of faces and names to tax hippocampal pattern separation and often lack naturalistic facial features (e.g., hair, accessories, similarity of features, emotional expressions). Here, we developed a face-name mnemonic discrimination task where we varied face stimuli by similarity, race, sex, and emotional expression as well as the similarity of name stimuli. We tested a sample of healthy young and older adults on this task and found that both age groups showed worsening performance as face-name interference increased. Overall, older adults struggled to remember faces and face-name pairs more than young adults. However, while young adults remembered emotional faces better than neutral faces, older adults selectively remembered positive faces. Thus, the use of a face-name association memory task designed with varying levels of face-name interference as well as the inclusion of naturalistic face stimuli across race, sex, and emotional expressions provides a more nuanced approach relative to traditional face-name association tasks toward understanding age-related changes in memory.
期刊介绍:
Neuropsychologia is an international interdisciplinary journal devoted to experimental and theoretical contributions that advance understanding of human cognition and behavior from a neuroscience perspective. The journal will consider for publication studies that link brain function with cognitive processes, including attention and awareness, action and motor control, executive functions and cognitive control, memory, language, and emotion and social cognition.