{"title":"Unavoidable Extinctions in Ecosystems of Extreme Isolation.","authors":"Eftychia Symeonidou, John Maxwell Halley","doi":"10.1089/ast.2022.0116","DOIUrl":null,"url":null,"abstract":"<p><p>Future systems of extreme isolation, including initiatives in space exploration, may require the services of onboard ecosystems. Biosphere 2, which ran between 1991 and 1993, aspired to mimic the earthly ecosystem and assess the ability of humans and other species to survive in a fully enclosed space. In this study, the data for plant species survival in the tropical rainforest sector from the first 2-year mission were studied through the prism of the neutral theory of biodiversity (NTB), which predicts how closed communities develop and how they lose species due to random demographic effects. Biosphere-2 lost species faster than a neutral process would predict. The specific reasons have been well documented, but the integrated approach of NTB offers new insights. It predicts that a closed ecological community must lose species and there is a specific time frame for this. To test it properly, the operation time of Biosphere-2 should have been at least 30 times greater. The new insights that NTB brings to the story of Biosphere 2 could be important for microcosm studies in general. A similar analysis suggests that the operation and testing time of other simulated ecosystems should also be increased.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"23 9","pages":"951-958"},"PeriodicalIF":3.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2022.0116","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Future systems of extreme isolation, including initiatives in space exploration, may require the services of onboard ecosystems. Biosphere 2, which ran between 1991 and 1993, aspired to mimic the earthly ecosystem and assess the ability of humans and other species to survive in a fully enclosed space. In this study, the data for plant species survival in the tropical rainforest sector from the first 2-year mission were studied through the prism of the neutral theory of biodiversity (NTB), which predicts how closed communities develop and how they lose species due to random demographic effects. Biosphere-2 lost species faster than a neutral process would predict. The specific reasons have been well documented, but the integrated approach of NTB offers new insights. It predicts that a closed ecological community must lose species and there is a specific time frame for this. To test it properly, the operation time of Biosphere-2 should have been at least 30 times greater. The new insights that NTB brings to the story of Biosphere 2 could be important for microcosm studies in general. A similar analysis suggests that the operation and testing time of other simulated ecosystems should also be increased.
期刊介绍:
Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research.
Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming