{"title":"Causal associations of brain structure with bone mineral density: a large-scale genetic correlation study.","authors":"Bin Guo, Chao Wang, Yong Zhu, Zhi Liu, Haitao Long, Zhe Ruan, Zhangyuan Lin, Zhihua Fan, Yusheng Li, Shushan Zhao","doi":"10.1038/s41413-023-00270-z","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we aimed to investigate the causal associations of brain structure with bone mineral density (BMD). Based on the genome-wide association study (GWAS) summary statistics of 1 325 brain imaging-derived phenotypes (BIDPs) of brain structure from the UK Biobank and GWAS summary datasets of 5 BMD locations, including the total body, femoral neck, lumbar spine, forearm, and heel from the GEFOS Consortium, linkage disequilibrium score regression (LDSC) was conducted to determine the genetic correlations, and Mendelian randomization (MR) was then performed to explore the causal relationship between the BIDPs and BMD. Several sensitivity analyses were performed to verify the strength and stability of the present MR outcomes. To increase confidence in our findings, we also performed confirmatory MR between BIDPs and osteoporosis. LDSC revealed that 1.93% of BIDPs, with a false discovery rate (FDR) < 0.01, were genetically correlated with BMD. Additionally, we observed that 1.31% of BIDPs exhibited a significant causal relationship with BMD (FDR < 0.01) through MR. Both the LDSC and MR results demonstrated that the BIDPs \"Volume of normalized brain,\" \"Volume of gray matter in Left Inferior Frontal Gyrus, pars opercularis,\" \"Volume of Estimated Total Intra Cranial\" and \"Volume-ratio of brain segmentation/estimated total intracranial\" had strong associations with BMD. Interestingly, our results showed that more left BIDPs were causally associated with BMD, especially within and around the left frontal region. In conclusion, a part of the brain structure causally influences BMD, which may provide important perspectives for the prevention of osteoporosis and offer valuable insights for further research on the brain-bone axis.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359275/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-023-00270-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
In this study, we aimed to investigate the causal associations of brain structure with bone mineral density (BMD). Based on the genome-wide association study (GWAS) summary statistics of 1 325 brain imaging-derived phenotypes (BIDPs) of brain structure from the UK Biobank and GWAS summary datasets of 5 BMD locations, including the total body, femoral neck, lumbar spine, forearm, and heel from the GEFOS Consortium, linkage disequilibrium score regression (LDSC) was conducted to determine the genetic correlations, and Mendelian randomization (MR) was then performed to explore the causal relationship between the BIDPs and BMD. Several sensitivity analyses were performed to verify the strength and stability of the present MR outcomes. To increase confidence in our findings, we also performed confirmatory MR between BIDPs and osteoporosis. LDSC revealed that 1.93% of BIDPs, with a false discovery rate (FDR) < 0.01, were genetically correlated with BMD. Additionally, we observed that 1.31% of BIDPs exhibited a significant causal relationship with BMD (FDR < 0.01) through MR. Both the LDSC and MR results demonstrated that the BIDPs "Volume of normalized brain," "Volume of gray matter in Left Inferior Frontal Gyrus, pars opercularis," "Volume of Estimated Total Intra Cranial" and "Volume-ratio of brain segmentation/estimated total intracranial" had strong associations with BMD. Interestingly, our results showed that more left BIDPs were causally associated with BMD, especially within and around the left frontal region. In conclusion, a part of the brain structure causally influences BMD, which may provide important perspectives for the prevention of osteoporosis and offer valuable insights for further research on the brain-bone axis.
期刊介绍:
Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.