Petronela Rezbarikova, Jana Viskupicova, Magdalena Majekova, Lubica Horakova
{"title":"Interaction of quercetin and its derivatives with Ca2+-ATPase from sarcoplasmic reticulum: Kinetic and molecular modeling studies.","authors":"Petronela Rezbarikova, Jana Viskupicova, Magdalena Majekova, Lubica Horakova","doi":"10.4149/gpb_2023020","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcoplasmic reticulum Ca2+-ATPases (SERCAs) regulate cellular calcium homeostasis and are targeted for age-related diseases. Among 14 SERCA mRNA splice variants, SERCA1a is specific to adult fast-twitch skeletal muscle. Quercetin derivatives (monochloropivaloylquercetin (CPQ), IC50 = 195.7 µM; 2-chloro-1,4-naphthoquinonequercetin (CHNQ), IC50 = 60.3 µM) were studied for their impact on SERCA1a using molecular modeling and enzyme kinetics. While there were some similarities in kinetic parameters and molecular modeling, the compounds exhibited diverse actions on SERCA1a. Quercetin reduced activity by 48% at 250 μM by binding to the cytosolic ATP-binding pocket with increased ATP affinity. CPQ bound near the Ca2+-binding site, possibly altering the transmembrane domain. CHNQ significantly reduced activity by 94% at 250 μM without binding to substrate sites. It was proposed that CHNQ induced global protein structure changes, inhibiting Ca2+-ATPase activity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4149/gpb_2023020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sarcoplasmic reticulum Ca2+-ATPases (SERCAs) regulate cellular calcium homeostasis and are targeted for age-related diseases. Among 14 SERCA mRNA splice variants, SERCA1a is specific to adult fast-twitch skeletal muscle. Quercetin derivatives (monochloropivaloylquercetin (CPQ), IC50 = 195.7 µM; 2-chloro-1,4-naphthoquinonequercetin (CHNQ), IC50 = 60.3 µM) were studied for their impact on SERCA1a using molecular modeling and enzyme kinetics. While there were some similarities in kinetic parameters and molecular modeling, the compounds exhibited diverse actions on SERCA1a. Quercetin reduced activity by 48% at 250 μM by binding to the cytosolic ATP-binding pocket with increased ATP affinity. CPQ bound near the Ca2+-binding site, possibly altering the transmembrane domain. CHNQ significantly reduced activity by 94% at 250 μM without binding to substrate sites. It was proposed that CHNQ induced global protein structure changes, inhibiting Ca2+-ATPase activity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.