{"title":"Multimodal fluorescence imaging and spectroscopic techniques for oral cancer screening: a real-time approach.","authors":"Pramila Thapa, Veena Singh, Sunil Bhatt, Kiran Maurya, Virendra Kumar, Vivek Nayyar, Kiran Jot, Deepika Mishra, Anurag Shrivastava, Dalip Singh Mehta","doi":"10.1088/2050-6120/acf6ac","DOIUrl":null,"url":null,"abstract":"<p><p>The survival rate of oral squamous cell carcinoma (OSCC) patients is very poor, but it can be improved using highly sensitive, specific, and accurate techniques. Autofluorescence and fluorescence techniques are very sensitive and helpful in cancer screening; being directly linked with the molecular levels of human tissue, they can be used as a quantitative tool for cancer detection. Here, we report the development of multi-modal autofluorescence and fluorescence imaging and spectroscopic (MAF-IS) smartphone-based systems for fast and real-time oral cancer screening. MAF-IS system is indigenously developed and offers the advantages of being a low-cost, handy, non-contact, non-invasive, and easily operable device that can be employed in hospitals, including low-resource settings. In this study, we report the results of 43 individuals with 28 OSCC and 15 oral potentially malignant disorders (OPMDs), i.e., epithelial dysplasia and oral submucous fibrosis, using the developed devices. We observed a red shift in fluorescence emission spectra<i>in vivo</i>. We found red-shift of 7.72 ± 6 nm, 3 ± 4.36 nm, and 1.33 ± 0.47 nm in the case of OSCC, epithelial dysplasia, and oral submucous fibrosis, respectively, compared to normal. The results were compared with histopathology and found to be consistent. Further, the MAF-IS system provides results in real-time with higher accuracy and sensitivity compared to devices using a single modality. Our system can achieve an accuracy of 97% with sensitivity and specificity of 100% and 94.7%, respectively, even with a smaller number of patients (28 patients of OSCC). The proposed MAF-IS device has great potential for fast screening and diagnosis of oral cancer in the future.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Applications in Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1088/2050-6120/acf6ac","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The survival rate of oral squamous cell carcinoma (OSCC) patients is very poor, but it can be improved using highly sensitive, specific, and accurate techniques. Autofluorescence and fluorescence techniques are very sensitive and helpful in cancer screening; being directly linked with the molecular levels of human tissue, they can be used as a quantitative tool for cancer detection. Here, we report the development of multi-modal autofluorescence and fluorescence imaging and spectroscopic (MAF-IS) smartphone-based systems for fast and real-time oral cancer screening. MAF-IS system is indigenously developed and offers the advantages of being a low-cost, handy, non-contact, non-invasive, and easily operable device that can be employed in hospitals, including low-resource settings. In this study, we report the results of 43 individuals with 28 OSCC and 15 oral potentially malignant disorders (OPMDs), i.e., epithelial dysplasia and oral submucous fibrosis, using the developed devices. We observed a red shift in fluorescence emission spectrain vivo. We found red-shift of 7.72 ± 6 nm, 3 ± 4.36 nm, and 1.33 ± 0.47 nm in the case of OSCC, epithelial dysplasia, and oral submucous fibrosis, respectively, compared to normal. The results were compared with histopathology and found to be consistent. Further, the MAF-IS system provides results in real-time with higher accuracy and sensitivity compared to devices using a single modality. Our system can achieve an accuracy of 97% with sensitivity and specificity of 100% and 94.7%, respectively, even with a smaller number of patients (28 patients of OSCC). The proposed MAF-IS device has great potential for fast screening and diagnosis of oral cancer in the future.
期刊介绍:
Methods and Applications in Fluorescence focuses on new developments in fluorescence spectroscopy, imaging, microscopy, fluorescent probes, labels and (nano)materials. It will feature both methods and advanced (bio)applications and accepts original research articles, reviews and technical notes.