{"title":"Receptor-mediated transcytosis of macromolecules across the blood-brain barrier.","authors":"Habib Baghirov","doi":"10.1080/17425247.2023.2255138","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The blood-brain barrier (BBB) restricts brain access of virtually all macromolecules. Receptor-mediated transcytosis (RMT) is one strategy toward their brain delivery. In this strategy, targeting ligands conjugated to therapeutic payload or decorating particles containing the payload interact with targets on brain capillary endothelial cells (BCEC), triggering internalization, trafficking, and release from BCEC.</p><p><strong>Areas covered: </strong>RMT at the BBB has leveraged multiple formats of macromolecules and large particles. Interactions between those and BCEC have been studied primarily using antibodies, with findings applicable to the design of larger particles. BBB-penetrant constructs have also been identified in screening campaigns and directed evolution, and subsequently found to interact with RMT targets. In addition, BCEC targeted by constructs incorporating genomic payload can be made to produce therapeutic proteins.</p><p><strong>Expert opinion: </strong>While targeting may not be strictly necessary to reach a therapeutic effect for all macromolecules, it can improve a molecule's BBB transport, exposing it to the entire brain parenchyma and enhancing its effect. Constructs with better BCEC transcytosis may be designed rationally, leveraging knowledge about BCEC trafficking, and found in screening campaigns, where this knowledge can reduce the search space and improve iterative refinement. Identification of new targets may also help generate BBB-crossing constructs.</p>","PeriodicalId":12229,"journal":{"name":"Expert Opinion on Drug Delivery","volume":" ","pages":"1699-1711"},"PeriodicalIF":5.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17425247.2023.2255138","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The blood-brain barrier (BBB) restricts brain access of virtually all macromolecules. Receptor-mediated transcytosis (RMT) is one strategy toward their brain delivery. In this strategy, targeting ligands conjugated to therapeutic payload or decorating particles containing the payload interact with targets on brain capillary endothelial cells (BCEC), triggering internalization, trafficking, and release from BCEC.
Areas covered: RMT at the BBB has leveraged multiple formats of macromolecules and large particles. Interactions between those and BCEC have been studied primarily using antibodies, with findings applicable to the design of larger particles. BBB-penetrant constructs have also been identified in screening campaigns and directed evolution, and subsequently found to interact with RMT targets. In addition, BCEC targeted by constructs incorporating genomic payload can be made to produce therapeutic proteins.
Expert opinion: While targeting may not be strictly necessary to reach a therapeutic effect for all macromolecules, it can improve a molecule's BBB transport, exposing it to the entire brain parenchyma and enhancing its effect. Constructs with better BCEC transcytosis may be designed rationally, leveraging knowledge about BCEC trafficking, and found in screening campaigns, where this knowledge can reduce the search space and improve iterative refinement. Identification of new targets may also help generate BBB-crossing constructs.
期刊介绍:
Expert Opinion on Drug Delivery (ISSN 1742-5247 [print], 1744-7593 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles covering all aspects of drug delivery research, from initial concept to potential therapeutic application and final relevance in clinical use. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.