{"title":"CircPTP4A2 Promotes Microglia Polarization in Cerebral Ischemic Stroke via miR-20b-5p/YTHDF1/TIMP2 Axis.","authors":"Xianxin Kang, Yanhui Cao, Guodong Sun, Dongsheng Fei, Kai Kang, Xianglin Meng, Mingyan Zhao","doi":"10.1007/s12017-023-08751-4","DOIUrl":null,"url":null,"abstract":"<p><p>Activated microglia play dual roles in ischemic stroke (IS) according to its polarization states. Herein, we investigated the function of circPTP4A2 in regulating microglia polarization in IS. IS models were established by MACO/R and OGD/R treatment. TTC staining was employed to detect cerebral infarct size. Cell vitality was measured using CCK-8 assay. CD16 and CD206 levels were examined using flow cytometry. The interactions between circPTP4A2, miR-20b-5p, and YTHDF1 were analyzed by dual-luciferase reporter gene, RIP, or RNA pull-down assays. circPTP4A2 was upregulated in IS patients. circPTP4A2 knockdown alleviated MCAO/R-induced cerebral injury in mice. circPTP4A2 knockdown promoted microglia M2 polarization after OGD/R. circPTP4A2 promoted YTHDF1 expression by sponging miR-20b-5p. The promoting effect of circPTP4A2 knockdown on microglia M2 polarization was abrogated by miR-20b-5p inhibition. YTHDF1 activated the NF-κB pathway by increasing TIMP2 mRNA stability and expression. circPTP4A2 downregulation promoted microglia M2 polarization to inhibit IS development by regulating the miR-20b-5p/YTHDF1/TIMP2/NF-κB axis.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":" ","pages":"501-515"},"PeriodicalIF":3.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-023-08751-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Activated microglia play dual roles in ischemic stroke (IS) according to its polarization states. Herein, we investigated the function of circPTP4A2 in regulating microglia polarization in IS. IS models were established by MACO/R and OGD/R treatment. TTC staining was employed to detect cerebral infarct size. Cell vitality was measured using CCK-8 assay. CD16 and CD206 levels were examined using flow cytometry. The interactions between circPTP4A2, miR-20b-5p, and YTHDF1 were analyzed by dual-luciferase reporter gene, RIP, or RNA pull-down assays. circPTP4A2 was upregulated in IS patients. circPTP4A2 knockdown alleviated MCAO/R-induced cerebral injury in mice. circPTP4A2 knockdown promoted microglia M2 polarization after OGD/R. circPTP4A2 promoted YTHDF1 expression by sponging miR-20b-5p. The promoting effect of circPTP4A2 knockdown on microglia M2 polarization was abrogated by miR-20b-5p inhibition. YTHDF1 activated the NF-κB pathway by increasing TIMP2 mRNA stability and expression. circPTP4A2 downregulation promoted microglia M2 polarization to inhibit IS development by regulating the miR-20b-5p/YTHDF1/TIMP2/NF-κB axis.
期刊介绍:
NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.