The clinical progress and challenges of mRNA vaccines.

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Meng-Zhen Yu, Nan-Nan Wang, Jia-Qing Zhu, Yao-Xin Lin
{"title":"The clinical progress and challenges of mRNA vaccines.","authors":"Meng-Zhen Yu,&nbsp;Nan-Nan Wang,&nbsp;Jia-Qing Zhu,&nbsp;Yao-Xin Lin","doi":"10.1002/wnan.1894","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to the breakthroughs in the prevention and control of the COVID-19 pandemic, messenger RNA (mRNA)-based vaccines have emerged as promising alternatives to conventional vaccine approaches for infectious disease prevention and anticancer treatments. Advantages of mRNA vaccines include flexibility in designing and manipulating antigens of interest, scalability in rapid response to new variants, ability to induce both humoral and cell-mediated immune responses, and ease of industrialization. This review article presents the latest advances and innovations in mRNA-based vaccines and their clinical translations in the prevention and treatment of infectious diseases or cancers. We also highlight various nanoparticle delivery platforms that contribute to their success in clinical translation. Current challenges related to mRNA immunogenicity, stability, and in vivo delivery and the strategies for addressing them are also discussed. Finally, we provide our perspectives on future considerations and opportunities for applying mRNA vaccines to fight against major infectious diseases and cancers. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 5","pages":"e1894"},"PeriodicalIF":6.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1894","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2

Abstract

Owing to the breakthroughs in the prevention and control of the COVID-19 pandemic, messenger RNA (mRNA)-based vaccines have emerged as promising alternatives to conventional vaccine approaches for infectious disease prevention and anticancer treatments. Advantages of mRNA vaccines include flexibility in designing and manipulating antigens of interest, scalability in rapid response to new variants, ability to induce both humoral and cell-mediated immune responses, and ease of industrialization. This review article presents the latest advances and innovations in mRNA-based vaccines and their clinical translations in the prevention and treatment of infectious diseases or cancers. We also highlight various nanoparticle delivery platforms that contribute to their success in clinical translation. Current challenges related to mRNA immunogenicity, stability, and in vivo delivery and the strategies for addressing them are also discussed. Finally, we provide our perspectives on future considerations and opportunities for applying mRNA vaccines to fight against major infectious diseases and cancers. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.

Abstract Image

信使核糖核酸疫苗的临床进展和挑战。
由于在预防和控制新冠肺炎大流行方面取得了突破,基于信使RNA(mRNA)的疫苗已成为传染病预防和抗癌治疗的传统疫苗方法的有前途的替代品。信使核糖核酸疫苗的优点包括设计和操纵感兴趣抗原的灵活性、对新变种的快速反应的可扩展性、诱导体液和细胞介导的免疫反应的能力以及易于工业化。这篇综述文章介绍了基于信使核糖核酸的疫苗的最新进展和创新,以及它们在传染病或癌症预防和治疗中的临床应用。我们还重点介绍了各种纳米颗粒递送平台,这些平台有助于它们在临床翻译中的成功。还讨论了当前与mRNA免疫原性、稳定性和体内递送相关的挑战以及解决这些挑战的策略。最后,我们提供了我们对应用信使核糖核酸疫苗对抗主要传染病和癌症的未来考虑和机会的看法。本文分类如下:治疗方法和药物发现>新兴技术治疗方法和药品发现>传染病纳米医学生物学启发的纳米材料>脂质基结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology NANOSCIENCE & NANOTECHNOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
16.60
自引率
2.30%
发文量
93
期刊介绍: Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists. Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信