Analytical studies on some pesticides with antifungal effects: Simultaneous determination by HPLC, investigation of interactions with DNA and DNA damages
Boğaç Buğra Barut , Cem Erkmen , Seda İpek , Sercan Yıldırım , Aylin Üstündağ , Bengi Uslu
{"title":"Analytical studies on some pesticides with antifungal effects: Simultaneous determination by HPLC, investigation of interactions with DNA and DNA damages","authors":"Boğaç Buğra Barut , Cem Erkmen , Seda İpek , Sercan Yıldırım , Aylin Üstündağ , Bengi Uslu","doi":"10.1016/j.jchromb.2023.123862","DOIUrl":null,"url":null,"abstract":"<div><p>A simple, and fast method was developed for the simultaneous determination of five fungicides, namely thiram (THR), epoxiconazole (EPO), hexaconazole (HEX), tebuconazole (TEB), and diethofencarb (DIE), in different matrices by HPLC-UV. Parameters influencing the peak shape and resolution, such as the composition of mobile phase, pH and concentration of buffer solution, and column temperature, were examined and optimized. The proposed method was validated in terms of linearity, sensitivity, precision, and accuracy. Forced degradation studies were carried out for all analytes to demonstrate the specificity of the method and to evaluate the stability of analytes under different conditions. DNA interaction and DNA damage studies were conducted by HPLC and comet assay, respectively. All fungicides were found to bind DNA, except for DIE. While the binding coefficients for EPO, HEX, and TEB were of the order of 10<sup>4</sup>, THR was found to interact more strongly with DNA with a binding coefficient of higher than 10<sup>6</sup>. DIE did not induce DNA damage at any concentration tested. On the other hand, TEB, HEX, and EPO induced DNA damage up to 30 µg/mL. THR showed cytotoxic effects at 20 and 30 µg/mL and caused significant DNA damage at lower concentrations.</p></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1229 ","pages":"Article 123862"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023223002726","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A simple, and fast method was developed for the simultaneous determination of five fungicides, namely thiram (THR), epoxiconazole (EPO), hexaconazole (HEX), tebuconazole (TEB), and diethofencarb (DIE), in different matrices by HPLC-UV. Parameters influencing the peak shape and resolution, such as the composition of mobile phase, pH and concentration of buffer solution, and column temperature, were examined and optimized. The proposed method was validated in terms of linearity, sensitivity, precision, and accuracy. Forced degradation studies were carried out for all analytes to demonstrate the specificity of the method and to evaluate the stability of analytes under different conditions. DNA interaction and DNA damage studies were conducted by HPLC and comet assay, respectively. All fungicides were found to bind DNA, except for DIE. While the binding coefficients for EPO, HEX, and TEB were of the order of 104, THR was found to interact more strongly with DNA with a binding coefficient of higher than 106. DIE did not induce DNA damage at any concentration tested. On the other hand, TEB, HEX, and EPO induced DNA damage up to 30 µg/mL. THR showed cytotoxic effects at 20 and 30 µg/mL and caused significant DNA damage at lower concentrations.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.