{"title":"Effects of stress contagion on anxiogenic- and orofacial inflammatory pain-like behaviors with brain activation in mice","authors":"Kajita Piriyaprasath, Mana Hasegawa, Yoshito Kakihara, Yuya Iwamoto, Rantaro Kamimura, Isao Saito, Noritaka Fujii, Kensuke Yamamura, Keiichiro Okamoto","doi":"10.1111/eos.12942","DOIUrl":null,"url":null,"abstract":"<p>The conditions of stress contagion are induced in bystanders without direct experiences of stressful events. This study determined the effects of stress contagion on masseter muscle nociception in mice. Stress contagion was developed in the bystanders after cohabitating with a conspecific mouse subjected to social defeat stress for 10 days. On Day 11, stress contagion increased anxiety- and orofacial inflammatory pain-like behaviors. The c-Fos and FosB immunoreactivities evoked by masseter muscle stimulation were increased in the upper cervical spinal cord, while c-Fos expressions were increased in the rostral ventromedial medulla, including the lateral paragigantocellular reticular nucleus and nucleus raphe magnus in stress contagion mice. The level of serotonin in the rostral ventromedial medulla was increased under stress contagion, while the number of serotonin positive cells was increased in the lateral paragigantocellular reticular nucleus. Stress contagion increased c-Fos and FosB expressions in the anterior cingulate cortex and insular cortex, both of which were positively correlated with orofacial inflammatory pain-like behaviors. The level of brain-derived neurotrophic factor was increased in the insular cortex under stress contagion. These results indicate that stress contagion can cause neural changes in the brain, resulting in increased masseter muscle nociception, as seen in social defeat stress mice.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Oral Sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eos.12942","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 1
Abstract
The conditions of stress contagion are induced in bystanders without direct experiences of stressful events. This study determined the effects of stress contagion on masseter muscle nociception in mice. Stress contagion was developed in the bystanders after cohabitating with a conspecific mouse subjected to social defeat stress for 10 days. On Day 11, stress contagion increased anxiety- and orofacial inflammatory pain-like behaviors. The c-Fos and FosB immunoreactivities evoked by masseter muscle stimulation were increased in the upper cervical spinal cord, while c-Fos expressions were increased in the rostral ventromedial medulla, including the lateral paragigantocellular reticular nucleus and nucleus raphe magnus in stress contagion mice. The level of serotonin in the rostral ventromedial medulla was increased under stress contagion, while the number of serotonin positive cells was increased in the lateral paragigantocellular reticular nucleus. Stress contagion increased c-Fos and FosB expressions in the anterior cingulate cortex and insular cortex, both of which were positively correlated with orofacial inflammatory pain-like behaviors. The level of brain-derived neurotrophic factor was increased in the insular cortex under stress contagion. These results indicate that stress contagion can cause neural changes in the brain, resulting in increased masseter muscle nociception, as seen in social defeat stress mice.
期刊介绍:
The European Journal of Oral Sciences is an international journal which publishes original research papers within clinical dentistry, on all basic science aspects of structure, chemistry, developmental biology, physiology and pathology of relevant tissues, as well as on microbiology, biomaterials and the behavioural sciences as they relate to dentistry. In general, analytical studies are preferred to descriptive ones. Reviews, Short Communications and Letters to the Editor will also be considered for publication.
The journal is published bimonthly.