Aili Wang, Yumiao Wang, Wanbing Liu, Li Liu, Jianye Zhou
{"title":"Effect of valve leaflet surface patterning on valve hydrodynamic performance.","authors":"Aili Wang, Yumiao Wang, Wanbing Liu, Li Liu, Jianye Zhou","doi":"10.1177/03913988231192118","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We aimed to elucidate the effects of the micro-structure of the pyrolytic carbon for artificial heart valves on its hydrodynamic performance.</p><p><strong>Methods: </strong>Bileaflet mechanical valves of GKS 23 and 29 A were randomly selected. According to ISO5840, mean transvalvular pressure (MPG), regurgitation fraction (RF), and effective orifice area (EOA) of valve were assessed. Then, parallel-groove pattern was constructed by laser etching on leaflet surface, and the valves were subjected again to the same test.</p><p><strong>Results: </strong>Compared with before patterning at 2, 3.5, 5, and 7 L/min, the MPG of the valves in two specifications were higher, the EOA was larger in 23 A, but smaller in 29 A, and the RF was contrary to EOA. At 5 L/min, the RF in both specifications was lower after etching at 45 bpm. At 70 bpm however, the RF in 23 A decreased, in 29 A increased.</p><p><strong>Conclusion: </strong>The parallel-groove pattern on leaflet surface affected the hemodynamic performance of the valve prostheses.</p>","PeriodicalId":13932,"journal":{"name":"International Journal of Artificial Organs","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03913988231192118","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: We aimed to elucidate the effects of the micro-structure of the pyrolytic carbon for artificial heart valves on its hydrodynamic performance.
Methods: Bileaflet mechanical valves of GKS 23 and 29 A were randomly selected. According to ISO5840, mean transvalvular pressure (MPG), regurgitation fraction (RF), and effective orifice area (EOA) of valve were assessed. Then, parallel-groove pattern was constructed by laser etching on leaflet surface, and the valves were subjected again to the same test.
Results: Compared with before patterning at 2, 3.5, 5, and 7 L/min, the MPG of the valves in two specifications were higher, the EOA was larger in 23 A, but smaller in 29 A, and the RF was contrary to EOA. At 5 L/min, the RF in both specifications was lower after etching at 45 bpm. At 70 bpm however, the RF in 23 A decreased, in 29 A increased.
Conclusion: The parallel-groove pattern on leaflet surface affected the hemodynamic performance of the valve prostheses.
期刊介绍:
The International Journal of Artificial Organs (IJAO) publishes peer-reviewed research and clinical, experimental and theoretical, contributions to the field of artificial, bioartificial and tissue-engineered organs. The mission of the IJAO is to foster the development and optimization of artificial, bioartificial and tissue-engineered organs, for implantation or use in procedures, to treat functional deficits of all human tissues and organs.