Neuroimaging-AI endophenotypes reveal underlying mechanisms and genetic factors contributing to progression and development of four brain disorders.

Junhao Wen, Ioanna Skampardoni, Ye Ella Tian, Zhijian Yang, Yuhan Cui, Guray Erus, Gyujoon Hwang, Erdem Varol, Aleix Boquet-Pujadas, Ganesh B Chand, Ilya Nasrallah, Theodore D Satterthwaite, Haochang Shou, Li Shen, Arthur W Toga, Andrew Zalesky, Christos Davatzikos
{"title":"Neuroimaging-AI endophenotypes reveal underlying mechanisms and genetic factors contributing to progression and development of four brain disorders.","authors":"Junhao Wen, Ioanna Skampardoni, Ye Ella Tian, Zhijian Yang, Yuhan Cui, Guray Erus, Gyujoon Hwang, Erdem Varol, Aleix Boquet-Pujadas, Ganesh B Chand, Ilya Nasrallah, Theodore D Satterthwaite, Haochang Shou, Li Shen, Arthur W Toga, Andrew Zalesky, Christos Davatzikos","doi":"10.1101/2023.08.16.23294179","DOIUrl":null,"url":null,"abstract":"<p><p>Recent work leveraging artificial intelligence has offered promise to dissect disease heterogeneity by identifying complex intermediate brain phenotypes, called dimensional neuroimaging endophenotypes (DNEs). We advance the argument that these DNEs capture the degree of expression of respective neuroanatomical patterns measured, offering a dimensional neuroanatomical representation for studying disease heterogeneity and similarities of neurologic and neuropsychiatric diseases. We investigate the presence of nine DNEs derived from independent yet harmonized studies on Alzheimer's disease, autism spectrum disorder, late-life depression, and schizophrenia in the UK Biobank study. Phenome-wide associations align with genome-wide associations, revealing 31 genomic loci (P-value<5×10<sup>-8</sup>/9) associated with the nine DNEs.The nine DNEs, along with their polygenic risk scores, significantly enhanced the predictive accuracy for 14 systemic disease categories, particularly for conditions related to mental health and the central nervous system, as well as mortality outcomes. These findings underscore the potential of the nine DNEs to capture the expression of disease-related brain phenotypes in individuals of the general population and to relate such measures with genetics, lifestyle factors, and chronic diseases.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/98/fa/nihpp-2023.08.16.23294179v1.PMC10473785.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.08.16.23294179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent work leveraging artificial intelligence has offered promise to dissect disease heterogeneity by identifying complex intermediate brain phenotypes, called dimensional neuroimaging endophenotypes (DNEs). We advance the argument that these DNEs capture the degree of expression of respective neuroanatomical patterns measured, offering a dimensional neuroanatomical representation for studying disease heterogeneity and similarities of neurologic and neuropsychiatric diseases. We investigate the presence of nine DNEs derived from independent yet harmonized studies on Alzheimer's disease, autism spectrum disorder, late-life depression, and schizophrenia in the UK Biobank study. Phenome-wide associations align with genome-wide associations, revealing 31 genomic loci (P-value<5×10-8/9) associated with the nine DNEs.The nine DNEs, along with their polygenic risk scores, significantly enhanced the predictive accuracy for 14 systemic disease categories, particularly for conditions related to mental health and the central nervous system, as well as mortality outcomes. These findings underscore the potential of the nine DNEs to capture the expression of disease-related brain phenotypes in individuals of the general population and to relate such measures with genetics, lifestyle factors, and chronic diseases.

Abstract Image

Abstract Image

Abstract Image

普通人群脑疾病的神经成像AI内表型:走向脆弱性的维度系统。
疾病异质性对临床和亚临床阶段的精确诊断提出了重大挑战。最近利用人工智能(AI)的工作有望通过识别复杂的中间表型(本文称为维度神经成像内表型(DNE))来剖析这种异质性,这些表型分型了各种神经和神经精神疾病。我们调查了在英国生物银行研究的39178名参与者的普通人群中,存在9种来自阿尔茨海默病(AD1-2)1、自闭症谱系障碍(ASD1-3)2、晚期抑郁症(LLD1-2)3和精神分裂症(SCZ1-2)4的独立但协调的研究的DNE。表型范围的关联揭示了九种DNE与大脑和其他人类器官系统相关表型之间的显著关联。这种表型景观与SNP表型全基因组关联一致,揭示了与9个DNE相关的31个基因组基因座(Bonferroni校正的P值<5×10-8/9)。DNE表现出显著的遗传相关性、共定位以及与多个人体器官系统和慢性疾病的因果关系。从以局灶性内侧颞叶萎缩为特征的AD2到AD,建立了因果效应(比值比=1.25[1.11,1.40],P值=8.72×1-4)。9个DNE及其多基因风险评分显著提高了14种系统性疾病类别和死亡率的预测准确性。这些发现强调了九种DNE在精确诊断的临床前阶段识别患有这四种脑部疾病的高风险个体的潜力。所有结果可在以下网站公开获取:http://labs.loni.usc.edu/medicine/.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信