{"title":"PDZK1 improves ventricular remodeling in hypertensive rats by regulating the stability of the Mas receptor","authors":"Jinyu Chi, Wanlin Li, Yang Xu, Xiuzhi Li, Xiaohui Zhang, Zhiyu Shi, Chunnan Liu, Wenxiu Liu, Meng Zhao, Yan Meng, Dechao Zhao","doi":"10.1007/s00726-023-03331-z","DOIUrl":null,"url":null,"abstract":"<div><p>Ventricular remodeling is one of the main causes of mortality from heart failure due to hypertension. Exploring its mechanism and finding therapeutic targets have become urgent scientific problems to be solved. A number of studies have shown that Mas, as an Ang-(1-7) specific receptor, was significantly reduced in myocardial tissue of rats undergoing hypertensive ventricular remodeling. It has been reported that Mas receptor levels are significantly downregulated in myocardium undergoing ventricular remodeling, but studies focused on intracellular and post-translational modifications of Mas are lacking. The results of this research are as follows: (1) PDZK1 interacts with the carboxyl terminus of Mas through its PDZ1 domain; (2) the expression of PDZK1 and Mas is decreased in rats undergoing hypertensive ventricular remodeling, and PDZK1 upregulation can ameliorate hypertensive myocardial fibrosis and myocardial hypertrophy; (3) PDZK1 enhances the stability of Mas protein through the proteasome pathway, and the proteasome inhibitor MG132 promotes hypertensive ventricular remodeling. PDZK1 improves ventricular remodeling in hypertensive rats by regulating Mas receptor stability. This study provides a scientific basis for the prevention and treatment of ventricular remodeling.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amino Acids","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00726-023-03331-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ventricular remodeling is one of the main causes of mortality from heart failure due to hypertension. Exploring its mechanism and finding therapeutic targets have become urgent scientific problems to be solved. A number of studies have shown that Mas, as an Ang-(1-7) specific receptor, was significantly reduced in myocardial tissue of rats undergoing hypertensive ventricular remodeling. It has been reported that Mas receptor levels are significantly downregulated in myocardium undergoing ventricular remodeling, but studies focused on intracellular and post-translational modifications of Mas are lacking. The results of this research are as follows: (1) PDZK1 interacts with the carboxyl terminus of Mas through its PDZ1 domain; (2) the expression of PDZK1 and Mas is decreased in rats undergoing hypertensive ventricular remodeling, and PDZK1 upregulation can ameliorate hypertensive myocardial fibrosis and myocardial hypertrophy; (3) PDZK1 enhances the stability of Mas protein through the proteasome pathway, and the proteasome inhibitor MG132 promotes hypertensive ventricular remodeling. PDZK1 improves ventricular remodeling in hypertensive rats by regulating Mas receptor stability. This study provides a scientific basis for the prevention and treatment of ventricular remodeling.
期刊介绍:
Amino Acids publishes contributions from all fields of amino acid and protein research: analysis, separation, synthesis, biosynthesis, cross linking amino acids, racemization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. Applications in medicine, food chemistry, nutrition, gastroenterology, nephrology, neurochemistry, pharmacology, excitatory amino acids are just some of the topics covered. Fields of interest include: Biochemistry, food chemistry, nutrition, neurology, psychiatry, pharmacology, nephrology, gastroenterology, microbiology