Optimality guarantees for crystal structure prediction

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2023-07-05 DOI:10.1038/s41586-023-06071-y
Vladimir V. Gusev, Duncan Adamson, Argyrios Deligkas, Dmytro Antypov, Christopher M. Collins, Piotr Krysta, Igor Potapov, George R. Darling, Matthew S. Dyer, Paul Spirakis, Matthew J. Rosseinsky
{"title":"Optimality guarantees for crystal structure prediction","authors":"Vladimir V. Gusev, Duncan Adamson, Argyrios Deligkas, Dmytro Antypov, Christopher M. Collins, Piotr Krysta, Igor Potapov, George R. Darling, Matthew S. Dyer, Paul Spirakis, Matthew J. Rosseinsky","doi":"10.1038/s41586-023-06071-y","DOIUrl":null,"url":null,"abstract":"Crystalline materials enable essential technologies, and their properties are determined by their structures. Crystal structure prediction can thus play a central part in the design of new functional materials1,2. Researchers have developed efficient heuristics to identify structural minima on the potential energy surface3–5. Although these methods can often access all configurations in principle, there is no guarantee that the lowest energy structure has been found. Here we show that the structure of a crystalline material can be predicted with energy guarantees by an algorithm that finds all the unknown atomic positions within a unit cell by combining combinatorial and continuous optimization. We encode the combinatorial task of finding the lowest energy periodic allocation of all atoms on a lattice as a mathematical optimization problem of integer programming6,7, enabling guaranteed identification of the global optimum using well-developed algorithms. A single subsequent local minimization of the resulting atom allocations then reaches the correct structures of key inorganic materials directly, proving their energetic optimality under clear assumptions. This formulation of crystal structure prediction establishes a connection to the theory of algorithms and provides the absolute energetic status of observed or predicted materials. It provides the ground truth for heuristic or data-driven structure prediction methods and is uniquely suitable for quantum annealers8–10, opening a path to overcome the combinatorial explosion of atomic configurations. An algorithm has been developed that can provably predict the lowest energy structure of crystalline materials using a combination of combinatorial optimization and integer programming.","PeriodicalId":18787,"journal":{"name":"Nature","volume":null,"pages":null},"PeriodicalIF":50.5000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-023-06071-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Crystalline materials enable essential technologies, and their properties are determined by their structures. Crystal structure prediction can thus play a central part in the design of new functional materials1,2. Researchers have developed efficient heuristics to identify structural minima on the potential energy surface3–5. Although these methods can often access all configurations in principle, there is no guarantee that the lowest energy structure has been found. Here we show that the structure of a crystalline material can be predicted with energy guarantees by an algorithm that finds all the unknown atomic positions within a unit cell by combining combinatorial and continuous optimization. We encode the combinatorial task of finding the lowest energy periodic allocation of all atoms on a lattice as a mathematical optimization problem of integer programming6,7, enabling guaranteed identification of the global optimum using well-developed algorithms. A single subsequent local minimization of the resulting atom allocations then reaches the correct structures of key inorganic materials directly, proving their energetic optimality under clear assumptions. This formulation of crystal structure prediction establishes a connection to the theory of algorithms and provides the absolute energetic status of observed or predicted materials. It provides the ground truth for heuristic or data-driven structure prediction methods and is uniquely suitable for quantum annealers8–10, opening a path to overcome the combinatorial explosion of atomic configurations. An algorithm has been developed that can provably predict the lowest energy structure of crystalline materials using a combination of combinatorial optimization and integer programming.

Abstract Image

晶体结构预测的最优性保证
晶体材料是重要技术的基础,其特性由晶体结构决定。因此,晶体结构预测在新型功能材料的设计中发挥着核心作用1,2。研究人员已经开发出高效的启发式方法来识别势能面上的结构最小值3-5。虽然这些方法原则上通常可以获得所有构型,但并不能保证找到了能量最低的结构。在这里,我们展示了一种通过组合优化和连续优化相结合的算法,可以在保证能量的情况下预测晶体材料的结构,这种算法可以找到单胞内所有未知的原子位置。我们将寻找晶格上所有原子的最低能量周期性分配这一组合任务编码为整数编程的数学优化问题6,7,从而确保使用成熟算法识别全局最优。随后对所得原子分配进行单次局部最小化,就能直接得出关键无机材料的正确结构,并在明确的假设条件下证明其能量最优性。这种晶体结构预测方法建立了与算法理论的联系,并提供了观测或预测材料的绝对能量状态。它为启发式或数据驱动的结构预测方法提供了基本事实,并独特地适用于量子退火炉8-10,为克服原子构型的组合爆炸开辟了道路。结合组合优化和整数编程,已经开发出一种算法,可以证明并预测晶体材料的最低能量结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信