{"title":"9-POHSA prevents NF-kB activation and ameliorates LPS-induced inflammation in rat hepatocytes","authors":"Jiro Hasegawa Situmorang, Ming-Cheng Chen, Wei-Wen Kuo, Shinn-Zong Lin, Cheng-Yen Shih, Pi-Yu Lin, Ching-Hui Loh, Chih-Yang Huang","doi":"10.1002/lipd.12380","DOIUrl":null,"url":null,"abstract":"<p>Liver inflammation has become increasingly prevalent in recent years, leading to the development of diseases like hepatitis, alcoholic liver disease, and fatty liver disease. One factor that has been linked to liver inflammation is increased levels of lipopolysaccharides (LPS), which can be caused by poor diets and sedentary lifestyles that contribute to liver inflammation. There is promising research on a new class of lipids called fatty acid esters of hydroxy fatty acids (FAHFAs), which have been shown to potentiate insulin release and exert an anti-inflammatory effect. Specifically, one type of FAHFA called 9-POHSA (palmitoleic acid ester of 9-hydroxy stearic acid) has been studied for its potential to attenuate inflammation-related indexes induced by LPS in hepatocytes, which play a critical role in the progression of liver inflammation. This study found that following LPS treatment, tumor necrosis factor- α, interleukin-6, and connective tissue growth factor (CTGF) were upregulated and increased cell migration, but 9-POHSA pre-treatment attenuated the upregulation of these markers and prevented cell migration induced by LPS. Using flowcytometry analysis, intracellular reactive oxygen species (ROS) was found to be responsible for CTGF upregulation. In addition, the effects of 9-POHSA were likely associated with its inhibition of the activation of the NF-kB. These results suggest that 9-POHSA has potential as a therapy for liver inflammation and fibrosis by attenuating inflammation-related indexes induced by LPS in hepatocytes. This study provides important insight into the mechanisms of liver inflammation and the potential for new treatments to address liver diseases.</p>","PeriodicalId":18086,"journal":{"name":"Lipids","volume":"58 5","pages":"241-249"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lipd.12380","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Liver inflammation has become increasingly prevalent in recent years, leading to the development of diseases like hepatitis, alcoholic liver disease, and fatty liver disease. One factor that has been linked to liver inflammation is increased levels of lipopolysaccharides (LPS), which can be caused by poor diets and sedentary lifestyles that contribute to liver inflammation. There is promising research on a new class of lipids called fatty acid esters of hydroxy fatty acids (FAHFAs), which have been shown to potentiate insulin release and exert an anti-inflammatory effect. Specifically, one type of FAHFA called 9-POHSA (palmitoleic acid ester of 9-hydroxy stearic acid) has been studied for its potential to attenuate inflammation-related indexes induced by LPS in hepatocytes, which play a critical role in the progression of liver inflammation. This study found that following LPS treatment, tumor necrosis factor- α, interleukin-6, and connective tissue growth factor (CTGF) were upregulated and increased cell migration, but 9-POHSA pre-treatment attenuated the upregulation of these markers and prevented cell migration induced by LPS. Using flowcytometry analysis, intracellular reactive oxygen species (ROS) was found to be responsible for CTGF upregulation. In addition, the effects of 9-POHSA were likely associated with its inhibition of the activation of the NF-kB. These results suggest that 9-POHSA has potential as a therapy for liver inflammation and fibrosis by attenuating inflammation-related indexes induced by LPS in hepatocytes. This study provides important insight into the mechanisms of liver inflammation and the potential for new treatments to address liver diseases.
期刊介绍:
Lipids is a journal of the American Oil Chemists'' Society (AOCS) that focuses on publishing high-quality peer-reviewed papers and invited reviews in the general area of lipid research, including chemistry, biochemistry, clinical nutrition, and metabolism. In addition, Lipids publishes papers establishing novel methods for addressing research questions in the field of lipid research.