Florin Macicasan, Alexandru Frasie, Nicoleta-Teodora Vezan, Camelia Lemnaru, Rodica Potolea
{"title":"Evolving a Pipeline Approach for Abstract Meaning Representation Parsing Towards Dynamic Neural Networks.","authors":"Florin Macicasan, Alexandru Frasie, Nicoleta-Teodora Vezan, Camelia Lemnaru, Rodica Potolea","doi":"10.1142/S0129065723500405","DOIUrl":null,"url":null,"abstract":"<p><p>Meaning Representation parsing aims to represent a sentence as a structured, Directed, Acyclic Graph (DAG), in an attempt to extract meaning from text. This paper extends an existing 2-stage pipeline AMR parser with state-of-the-art techniques in dependency parsing. First, Pointer-Generator Networks are used for out-of-vocabulary words in the concept identification stage, with an improved initialization via the use of word-and character-level embeddings. Second, the performance of the Relation Identification module is improved by jointly training the Heads Selection and the Arcs Labeling components. Last, we underline the difficulty of end-to-end training with recurrent modules in a static deep neural network construction approach and explore a dynamic construction implementation, which continuously adapts the computation graph, thus potentially enabling end-to-end training in the proposed pipeline solution.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"33 7","pages":"2350040"},"PeriodicalIF":6.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500405","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Meaning Representation parsing aims to represent a sentence as a structured, Directed, Acyclic Graph (DAG), in an attempt to extract meaning from text. This paper extends an existing 2-stage pipeline AMR parser with state-of-the-art techniques in dependency parsing. First, Pointer-Generator Networks are used for out-of-vocabulary words in the concept identification stage, with an improved initialization via the use of word-and character-level embeddings. Second, the performance of the Relation Identification module is improved by jointly training the Heads Selection and the Arcs Labeling components. Last, we underline the difficulty of end-to-end training with recurrent modules in a static deep neural network construction approach and explore a dynamic construction implementation, which continuously adapts the computation graph, thus potentially enabling end-to-end training in the proposed pipeline solution.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.