{"title":"CircAGFG1 absence decreases PKM2 expression to enhance oxaliplatin sensitivity in colorectal cancer in a miR-7-5p-dependent manner.","authors":"Jun Chen, Hongwei Wang, Mingsheng Tang","doi":"10.1080/1120009X.2023.2253680","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNA (circRNA) ArfGAP with FG repeats 1 (circAGFG1) contributes to colorectal cancer (CRC) development. However, whether circAGFG1 regulates the resistance of CRC to oxaliplatin (L-OHP) remains unknown. CircAGFG1, microRNA-7-5p (miR-7-5p) and pyruvate kinase M2 (PKM2) RNA expression were quantified by quantitative real-time polymerase chain reaction. Protein expression was detected by western blot assay and immunohistochemistry assay. Glycolysis was analyzed through glucose uptake, lactate production and adenosine triphosphate (ATP) concentration assays. 50% inhibitory concentration of L-OHP was determined by cell counting kit-8 assay. Cell proliferation and apoptotic rate were analyzed by cell colony formation and flow cytometry analysis, respectively. Dual-luciferase reporter assay was used to identify the relationship among circAGFG1, miR-7- 5p and PKM2. The effect of circAGFG1 on L-OHP sensitivity <i>in vivo</i> was further evaluated by a xenograft model assay. CircAGFG1 and PKM2 expression were significantly increased, while miR-7-5p was decreased in L-OHP-resistant CRC tissues and cells. High circAGFG1 expression predicted a poor prognosis of CRC. CircAGFG1 knockdown or PKM2 depletion decreased glycolysis and cell proliferation and increased L-OHP sensitivity and cell apoptosis. PKM2 introduction rescued circAGFG1 silencing-induced effects in CRC cells. In terms of mechanism, circAGFG1 bound to miR-7-5p, which was identified to target PKM2. Also, circAGFG1 regulated PKM2 expression by interacting with miR-7-5p. Further, circAGFG1 knockdown improved the sensitivity of tumors to L-OHP <i>in vivo</i>. CircAGFG1 depletion inhibited L-OHP resistance by regulating the miR-7-5p/PKM2 pathway.</p>","PeriodicalId":15338,"journal":{"name":"Journal of Chemotherapy","volume":" ","pages":"208-221"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1120009X.2023.2253680","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Circular RNA (circRNA) ArfGAP with FG repeats 1 (circAGFG1) contributes to colorectal cancer (CRC) development. However, whether circAGFG1 regulates the resistance of CRC to oxaliplatin (L-OHP) remains unknown. CircAGFG1, microRNA-7-5p (miR-7-5p) and pyruvate kinase M2 (PKM2) RNA expression were quantified by quantitative real-time polymerase chain reaction. Protein expression was detected by western blot assay and immunohistochemistry assay. Glycolysis was analyzed through glucose uptake, lactate production and adenosine triphosphate (ATP) concentration assays. 50% inhibitory concentration of L-OHP was determined by cell counting kit-8 assay. Cell proliferation and apoptotic rate were analyzed by cell colony formation and flow cytometry analysis, respectively. Dual-luciferase reporter assay was used to identify the relationship among circAGFG1, miR-7- 5p and PKM2. The effect of circAGFG1 on L-OHP sensitivity in vivo was further evaluated by a xenograft model assay. CircAGFG1 and PKM2 expression were significantly increased, while miR-7-5p was decreased in L-OHP-resistant CRC tissues and cells. High circAGFG1 expression predicted a poor prognosis of CRC. CircAGFG1 knockdown or PKM2 depletion decreased glycolysis and cell proliferation and increased L-OHP sensitivity and cell apoptosis. PKM2 introduction rescued circAGFG1 silencing-induced effects in CRC cells. In terms of mechanism, circAGFG1 bound to miR-7-5p, which was identified to target PKM2. Also, circAGFG1 regulated PKM2 expression by interacting with miR-7-5p. Further, circAGFG1 knockdown improved the sensitivity of tumors to L-OHP in vivo. CircAGFG1 depletion inhibited L-OHP resistance by regulating the miR-7-5p/PKM2 pathway.
期刊介绍:
The Journal of Chemotherapy is an international multidisciplinary journal committed to the rapid publication of high quality, peer-reviewed, original research on all aspects of antimicrobial and antitumor chemotherapy.
The Journal publishes original experimental and clinical research articles, state-of-the-art reviews, brief communications and letters on all aspects of chemotherapy, providing coverage of the pathogenesis, diagnosis, treatment, and control of infection, as well as the use of anticancer and immunomodulating drugs.
Specific areas of focus include, but are not limited to:
· Antibacterial, antiviral, antifungal, antiparasitic, and antiprotozoal agents;
· Anticancer classical and targeted chemotherapeutic agents, biological agents, hormonal drugs, immunomodulatory drugs, cell therapy and gene therapy;
· Pharmacokinetic and pharmacodynamic properties of antimicrobial and anticancer agents;
· The efficacy, safety and toxicology profiles of antimicrobial and anticancer drugs;
· Drug interactions in single or combined applications;
· Drug resistance to antimicrobial and anticancer drugs;
· Research and development of novel antimicrobial and anticancer drugs, including preclinical, translational and clinical research;
· Biomarkers of sensitivity and/or resistance for antimicrobial and anticancer drugs;
· Pharmacogenetics and pharmacogenomics;
· Precision medicine in infectious disease therapy and in cancer therapy;
· Pharmacoeconomics of antimicrobial and anticancer therapies and the implications to patients, health services, and the pharmaceutical industry.