Erica E M Moodie, Zeyu Bian, Janie Coulombe, Yi Lian, Archer Y Yang, Susan M Shortreed
{"title":"Variable selection in high dimensions for discrete-outcome individualized treatment rules: Reducing severity of depression symptoms.","authors":"Erica E M Moodie, Zeyu Bian, Janie Coulombe, Yi Lian, Archer Y Yang, Susan M Shortreed","doi":"10.1093/biostatistics/kxad022","DOIUrl":null,"url":null,"abstract":"<p><p>Despite growing interest in estimating individualized treatment rules, little attention has been given the binary outcome setting. Estimation is challenging with nonlinear link functions, especially when variable selection is needed. We use a new computational approach to solve a recently proposed doubly robust regularized estimating equation to accomplish this difficult task in a case study of depression treatment. We demonstrate an application of this new approach in combination with a weighted and penalized estimating equation to this challenging binary outcome setting. We demonstrate the double robustness of the method and its effectiveness for variable selection. The work is motivated by and applied to an analysis of treatment for unipolar depression using a population of patients treated at Kaiser Permanente Washington.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite growing interest in estimating individualized treatment rules, little attention has been given the binary outcome setting. Estimation is challenging with nonlinear link functions, especially when variable selection is needed. We use a new computational approach to solve a recently proposed doubly robust regularized estimating equation to accomplish this difficult task in a case study of depression treatment. We demonstrate an application of this new approach in combination with a weighted and penalized estimating equation to this challenging binary outcome setting. We demonstrate the double robustness of the method and its effectiveness for variable selection. The work is motivated by and applied to an analysis of treatment for unipolar depression using a population of patients treated at Kaiser Permanente Washington.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.