{"title":"The effects of a single bout of moderate-intensity aerobic exercise on visuomotor adaptation and its savings","authors":"Reshma James, Jinsung Wang","doi":"10.1016/j.nlm.2023.107801","DOIUrl":null,"url":null,"abstract":"<div><p>Performing exercise before or after motor skill learning is thought to have a positive impact on acquisition and retention of motor memories stored in our nervous system. It has been shown that performing 25 min of moderate-intensity aerobic exercise prior to visuomotor adaptation can enhance both visuomotor adaptation and its retention compared to 25 min of rest before the adaptation. To determine whether a single bout of aerobic exercise could actually facilitate the formation of a neural representation associated with a novel visuomotor condition, we examined aftereffects and savings associated with a visuomotor adaptation task following either an exercise or a rest condition. Sixteen healthy young individuals (18–35 years) first experienced 25 min of moderate-intensity cycling or rest, and then adapted to a 30-degree visuomotor rotation condition. Immediately following that, participants experienced a washout session, which was followed by a readaptation session. Results indicated that all subjects adapted to the visuomotor rotation completely, although no difference was found between the cycling and rest conditions. Aftereffects and savings were also observed in both conditions, but with no difference between the conditions. These findings suggest that compared to a short rest session, a single bout of moderate-intensity cycling may not have a greater impact for enhancing visuomotor adaptation and its retention. Further research is needed, in which the effects of certain factors such as exercise intensity, duration and timing are more systematically investigated.</p></div>","PeriodicalId":19102,"journal":{"name":"Neurobiology of Learning and Memory","volume":"204 ","pages":"Article 107801"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Learning and Memory","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1074742723000825","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Performing exercise before or after motor skill learning is thought to have a positive impact on acquisition and retention of motor memories stored in our nervous system. It has been shown that performing 25 min of moderate-intensity aerobic exercise prior to visuomotor adaptation can enhance both visuomotor adaptation and its retention compared to 25 min of rest before the adaptation. To determine whether a single bout of aerobic exercise could actually facilitate the formation of a neural representation associated with a novel visuomotor condition, we examined aftereffects and savings associated with a visuomotor adaptation task following either an exercise or a rest condition. Sixteen healthy young individuals (18–35 years) first experienced 25 min of moderate-intensity cycling or rest, and then adapted to a 30-degree visuomotor rotation condition. Immediately following that, participants experienced a washout session, which was followed by a readaptation session. Results indicated that all subjects adapted to the visuomotor rotation completely, although no difference was found between the cycling and rest conditions. Aftereffects and savings were also observed in both conditions, but with no difference between the conditions. These findings suggest that compared to a short rest session, a single bout of moderate-intensity cycling may not have a greater impact for enhancing visuomotor adaptation and its retention. Further research is needed, in which the effects of certain factors such as exercise intensity, duration and timing are more systematically investigated.
期刊介绍:
Neurobiology of Learning and Memory publishes articles examining the neurobiological mechanisms underlying learning and memory at all levels of analysis ranging from molecular biology to synaptic and neural plasticity and behavior. We are especially interested in manuscripts that examine the neural circuits and molecular mechanisms underlying learning, memory and plasticity in both experimental animals and human subjects.