Andreu Cera, Gabriel Montserrat-Martí, Sara Palacio
{"title":"Nutritional strategy underlying plant specialization to gypsum soils.","authors":"Andreu Cera, Gabriel Montserrat-Martí, Sara Palacio","doi":"10.1093/aobpla/plad041","DOIUrl":null,"url":null,"abstract":"<p><p>Gypsum soils are amongst the most widespread extreme substrates of the world, occurring in 112 countries. This type of hypercalcic substrate has a suite of extreme physical and chemical properties that make it stressful for plant establishment and growth. Extreme chemical properties include low plant-available nitrogen and phosphorus and high plant-available sulphur and calcium, which impose strong nutritional imbalances on plants. In spite of these edaphic barriers, gypsum soils harbour rich endemic floras that have evolved independently on five continents, with highly specialized species. Plants that only grow on gypsum are considered soil specialists, and they have a foliar elemental composition similar to the elemental availability of gypsum soils, with high calcium, sulphur and magnesium accumulation. However, the physiological and ecological role of the unique foliar elemental composition of gypsum specialists remains poorly understood, and it is unknown whether it provides an ecological advantage over other generalist species on gypsum soils. This article reviews available literature on the impact of gypsum soil features on plant life and the mechanisms underlying plant adaptation to gypsum environments. We conclude with a hypothesis on the potential role of the nutritional strategy underlying plant specialization to gypsum soils: Gypsum specialists primarily use SO<sub>4</sub><sup>2-</sup> as a counter anion to tolerate high Ca<sup>2+</sup> concentrations in cells and avoid phosphorus depletion, which is one of the most limiting nutrients in gypsum soils.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"15 4","pages":"plad041"},"PeriodicalIF":2.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337853/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AoB Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aobpla/plad041","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Gypsum soils are amongst the most widespread extreme substrates of the world, occurring in 112 countries. This type of hypercalcic substrate has a suite of extreme physical and chemical properties that make it stressful for plant establishment and growth. Extreme chemical properties include low plant-available nitrogen and phosphorus and high plant-available sulphur and calcium, which impose strong nutritional imbalances on plants. In spite of these edaphic barriers, gypsum soils harbour rich endemic floras that have evolved independently on five continents, with highly specialized species. Plants that only grow on gypsum are considered soil specialists, and they have a foliar elemental composition similar to the elemental availability of gypsum soils, with high calcium, sulphur and magnesium accumulation. However, the physiological and ecological role of the unique foliar elemental composition of gypsum specialists remains poorly understood, and it is unknown whether it provides an ecological advantage over other generalist species on gypsum soils. This article reviews available literature on the impact of gypsum soil features on plant life and the mechanisms underlying plant adaptation to gypsum environments. We conclude with a hypothesis on the potential role of the nutritional strategy underlying plant specialization to gypsum soils: Gypsum specialists primarily use SO42- as a counter anion to tolerate high Ca2+ concentrations in cells and avoid phosphorus depletion, which is one of the most limiting nutrients in gypsum soils.
期刊介绍:
AoB PLANTS is an open-access, online journal that has been publishing peer-reviewed articles since 2010, with an emphasis on all aspects of environmental and evolutionary plant biology. Published by Oxford University Press, this journal is dedicated to rapid publication of research articles, reviews, commentaries and short communications. The taxonomic scope of the journal spans the full gamut of vascular and non-vascular plants, as well as other taxa that impact these organisms. AoB PLANTS provides a fast-track pathway for publishing high-quality research in an open-access environment, where papers are available online to anyone, anywhere free of charge.