Data-driven indicators for the detection and prediction of stuck-pipe events in oil&gas drilling operations

IF 2.6 Q3 ENERGY & FUELS
Aida Brankovic , Matteo Matteucci , Marcello Restelli , Luca Ferrarini , Luigi Piroddi , Andrea Spelta , Fabrizio Zausa
{"title":"Data-driven indicators for the detection and prediction of stuck-pipe events in oil&gas drilling operations","authors":"Aida Brankovic ,&nbsp;Matteo Matteucci ,&nbsp;Marcello Restelli ,&nbsp;Luca Ferrarini ,&nbsp;Luigi Piroddi ,&nbsp;Andrea Spelta ,&nbsp;Fabrizio Zausa","doi":"10.1016/j.upstre.2021.100043","DOIUrl":null,"url":null,"abstract":"<div><p><span>Stuck-pipe phenomena can have disastrous effects on drilling performance, with outcomes that can range from time delays to loss of expensive machinery. In this work, we develop three indicators based on mudlog data, which aim to detect three different physical phenomena associated with the insurgence of a sticking. In particular, two indices target respectively the detection of translational and </span>rotational motion<span> issues, while the third index concerns the wellbore pressure. A statistical model that relates these features to documented stuck-pipe events is then developed using advanced machine learning tools. The resulting model takes the form of a depth-based map of the risk of incurring into a stuck-pipe, updated in real-time. Preliminary experimental results on the available dataset indicate that the use of the proposed model and indicators can help mitigate the stuck-pipe issue.</span></p></div>","PeriodicalId":101264,"journal":{"name":"Upstream Oil and Gas Technology","volume":"7 ","pages":"Article 100043"},"PeriodicalIF":2.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.upstre.2021.100043","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Upstream Oil and Gas Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266626042100013X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 8

Abstract

Stuck-pipe phenomena can have disastrous effects on drilling performance, with outcomes that can range from time delays to loss of expensive machinery. In this work, we develop three indicators based on mudlog data, which aim to detect three different physical phenomena associated with the insurgence of a sticking. In particular, two indices target respectively the detection of translational and rotational motion issues, while the third index concerns the wellbore pressure. A statistical model that relates these features to documented stuck-pipe events is then developed using advanced machine learning tools. The resulting model takes the form of a depth-based map of the risk of incurring into a stuck-pipe, updated in real-time. Preliminary experimental results on the available dataset indicate that the use of the proposed model and indicators can help mitigate the stuck-pipe issue.

用于油气钻井中卡钻事件检测和预测的数据驱动指标
卡钻现象会对钻井性能造成灾难性的影响,其后果可能包括时间延误和昂贵机器的损失。在这项工作中,我们根据泥浆测井数据开发了三种指标,旨在检测与粘滞相关的三种不同物理现象。其中两个指标分别针对检测平移和旋转运动问题,而第三个指标涉及井筒压力。然后使用先进的机器学习工具开发将这些特征与记录的卡钻事件联系起来的统计模型。生成的模型采用基于深度的卡钻风险图的形式,并实时更新。在现有数据集上的初步实验结果表明,使用所提出的模型和指标可以帮助缓解卡管问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信