{"title":"Bioaugmentation: an approach to biological treatment of pollutants","authors":"Dixita Chettri, Ashwani Kumar Verma, Anil Kumar Verma","doi":"10.1007/s10532-023-10050-5","DOIUrl":null,"url":null,"abstract":"<div><p>Industrial development and the associated generation of waste requires attention for their management, treatment, and reduction without further degrading the quality of life. Microbes and plant-based bioremediation approaches are some of the sustainable strategies for the biodegradation of harmful pollutants instead of chemical-based treatment. Bioaugmentation is one such approach where microbial strains with the ability to degrade the targeted pollutant are introduced in a polluted environment. Harnessing of microbes from various locations, especially from the site of contamination (indigenous microbes), followed by optimization of the strains, inoculum size, media, and genetic engineering of the microbes along with a combination of strategies such as bio stimulation, phytoremediation is being applied to increase the efficiency of bioaugmentation. Further, bioaugmentation is influenced by various factors such as temperature, the composition of the pollutant, and microbial inoculum which needs to be considered for maximum efficiency of the treatment process. It has numerous advantages such as low cost, sustainability, and easy handling of the contaminants however, the major limitation of bioaugmentation is to increase the survival rate of the microbes involved in remediation for a longer duration in such a highly toxic environment. The review discusses these various aspects of bioaugmentation in brief for its large-scale implementation to address the global issue of pollution and environment management.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10050-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial development and the associated generation of waste requires attention for their management, treatment, and reduction without further degrading the quality of life. Microbes and plant-based bioremediation approaches are some of the sustainable strategies for the biodegradation of harmful pollutants instead of chemical-based treatment. Bioaugmentation is one such approach where microbial strains with the ability to degrade the targeted pollutant are introduced in a polluted environment. Harnessing of microbes from various locations, especially from the site of contamination (indigenous microbes), followed by optimization of the strains, inoculum size, media, and genetic engineering of the microbes along with a combination of strategies such as bio stimulation, phytoremediation is being applied to increase the efficiency of bioaugmentation. Further, bioaugmentation is influenced by various factors such as temperature, the composition of the pollutant, and microbial inoculum which needs to be considered for maximum efficiency of the treatment process. It has numerous advantages such as low cost, sustainability, and easy handling of the contaminants however, the major limitation of bioaugmentation is to increase the survival rate of the microbes involved in remediation for a longer duration in such a highly toxic environment. The review discusses these various aspects of bioaugmentation in brief for its large-scale implementation to address the global issue of pollution and environment management.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.