TRPC Channels Activated by G Protein-Coupled Receptors Drive Ca2+ Dysregulation Leading to Secondary Brain Injury in the Mouse Model.

IF 3.8 2区 医学 Q1 CLINICAL NEUROLOGY
Translational Stroke Research Pub Date : 2024-08-01 Epub Date: 2023-07-18 DOI:10.1007/s12975-023-01173-1
Jasneet Parmar, Georg von Jonquieres, Nagarajesh Gorlamandala, Brandon Chung, Amanda J Craig, Jeremy L Pinyon, Lutz Birnbaumer, Matthias Klugmann, Andrew J Moorhouse, John M Power, Gary D Housley
{"title":"TRPC Channels Activated by G Protein-Coupled Receptors Drive Ca<sup>2+</sup> Dysregulation Leading to Secondary Brain Injury in the Mouse Model.","authors":"Jasneet Parmar, Georg von Jonquieres, Nagarajesh Gorlamandala, Brandon Chung, Amanda J Craig, Jeremy L Pinyon, Lutz Birnbaumer, Matthias Klugmann, Andrew J Moorhouse, John M Power, Gary D Housley","doi":"10.1007/s12975-023-01173-1","DOIUrl":null,"url":null,"abstract":"<p><p>Canonical transient receptor potential (TRPC) non-selective cation channels, particularly those assembled with TRPC3, TRPC6, and TRPC7 subunits, are coupled to G<sub>αq</sub>-type G protein-coupled receptors for the major classes of excitatory neurotransmitters. Sustained activation of this TRPC channel-based pathophysiological signaling hub in neurons and glia likely contributes to prodigious excitotoxicity-driven secondary brain injury expansion. This was investigated in mouse models with selective Trpc gene knockout (KO). In adult cerebellar brain slices, application of glutamate and the class I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine to Purkinje neurons expressing the GCaMP5g Ca<sup>2+</sup> reporter demonstrated that the majority of the Ca<sup>2+</sup> loading in the molecular layer dendritic arbors was attributable to the TRPC3 effector channels (Trpc3<sup>KO</sup> compared with wildtype (WT)). This Ca<sup>2+</sup> dysregulation was associated with glutamate excitotoxicity causing progressive disruption of the Purkinje cell dendrites (significantly abated in a GAD67-GFP-Trpc3<sup>KO</sup> reporter brain slice model). Contribution of the G<sub>αq</sub>-coupled TRPC channels to secondary brain injury was evaluated in a dual photothrombotic focal ischemic injury model targeting cerebellar and cerebral cortex regions, comparing day 4 post-injury in WT mice, Trpc3<sup>KO</sup>, and Trpc1/3/6/7 quadruple knockout (Trpc<sup>QKO</sup>), with immediate 2-h (primary) brain injury. Neuroprotection to secondary brain injury was afforded in both brain regions by Trpc3<sup>KO</sup> and Trpc<sup>QKO</sup> models, with the Trpc<sup>QKO</sup> showing greatest neuroprotection. These findings demonstrate the contribution of the G<sub>αq</sub>-coupled TRPC effector mechanism to excitotoxicity-based secondary brain injury expansion, which is a primary driver for mortality and morbidity in stroke, traumatic brain injury, and epilepsy.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"844-858"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-023-01173-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Canonical transient receptor potential (TRPC) non-selective cation channels, particularly those assembled with TRPC3, TRPC6, and TRPC7 subunits, are coupled to Gαq-type G protein-coupled receptors for the major classes of excitatory neurotransmitters. Sustained activation of this TRPC channel-based pathophysiological signaling hub in neurons and glia likely contributes to prodigious excitotoxicity-driven secondary brain injury expansion. This was investigated in mouse models with selective Trpc gene knockout (KO). In adult cerebellar brain slices, application of glutamate and the class I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine to Purkinje neurons expressing the GCaMP5g Ca2+ reporter demonstrated that the majority of the Ca2+ loading in the molecular layer dendritic arbors was attributable to the TRPC3 effector channels (Trpc3KO compared with wildtype (WT)). This Ca2+ dysregulation was associated with glutamate excitotoxicity causing progressive disruption of the Purkinje cell dendrites (significantly abated in a GAD67-GFP-Trpc3KO reporter brain slice model). Contribution of the Gαq-coupled TRPC channels to secondary brain injury was evaluated in a dual photothrombotic focal ischemic injury model targeting cerebellar and cerebral cortex regions, comparing day 4 post-injury in WT mice, Trpc3KO, and Trpc1/3/6/7 quadruple knockout (TrpcQKO), with immediate 2-h (primary) brain injury. Neuroprotection to secondary brain injury was afforded in both brain regions by Trpc3KO and TrpcQKO models, with the TrpcQKO showing greatest neuroprotection. These findings demonstrate the contribution of the Gαq-coupled TRPC effector mechanism to excitotoxicity-based secondary brain injury expansion, which is a primary driver for mortality and morbidity in stroke, traumatic brain injury, and epilepsy.

Abstract Image

由 G 蛋白偶联受体激活的 TRPC 通道驱动 Ca2+ 失调,导致小鼠模型中的继发性脑损伤。
典型的瞬态受体电位(TRPC)非选择性阳离子通道,特别是那些与 TRPC3、TRPC6 和 TRPC7 亚基组装在一起的通道,与 Gαq 型 G 蛋白偶联受体相耦合,可产生主要类别的兴奋性神经递质。神经元和神经胶质细胞中这种基于 TRPC 通道的病理生理信号枢纽的持续激活很可能会导致兴奋性毒性驱动的继发性脑损伤急剧扩大。我们在选择性Trpc基因敲除(KO)的小鼠模型中对此进行了研究。在成体小脑切片中,向表达 GCaMP5g Ca2+ 报告的普肯耶神经元施用谷氨酸和 I 类代谢谷氨酸受体激动剂 (S)-3,5- 二羟基苯甘氨酸,结果表明分子层树突轴中的大部分 Ca2+ 负荷归因于 TRPC3 效应通道(Trpc3KO 与野生型(WT)相比)。这种 Ca2+ 失调与谷氨酸兴奋毒性有关,它导致了 Purkinje 细胞树突的逐渐破坏(在 GAD67-GFP-Trpc3KO 报告脑片模型中显著减弱)。在针对小脑和大脑皮层区域的双光栓灶性缺血损伤模型中,比较了WT小鼠、Trpc3KO和Trpc1/3/6/7四重基因敲除(TrpcQKO)小鼠损伤后第4天与直接2小时(原发性)脑损伤,评估了Gαq偶联TRPC通道对继发性脑损伤的贡献。Trpc3KO和TrpcQKO模型对两个脑区的继发性脑损伤都有神经保护作用,其中TrpcQKO的神经保护作用最强。这些发现证明了 Gαq 偶联 TRPC 效应器机制对兴奋毒性继发性脑损伤扩展的贡献,而继发性脑损伤是导致中风、创伤性脑损伤和癫痫死亡和发病的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Translational Stroke Research
Translational Stroke Research CLINICAL NEUROLOGY-NEUROSCIENCES
CiteScore
13.80
自引率
4.30%
发文量
130
审稿时长
6-12 weeks
期刊介绍: Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma. Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信