Juan Liu, Yuangang Zhu, Kaibo Yang, Jian Song, Tisen Xu, Zhongmin Dai
{"title":"Endosperm and amyloplast development in waxy wheat cultivars.","authors":"Juan Liu, Yuangang Zhu, Kaibo Yang, Jian Song, Tisen Xu, Zhongmin Dai","doi":"10.1007/s00709-023-01889-9","DOIUrl":null,"url":null,"abstract":"<p><p>The endosperm is an essential part of wheat grains, and the accumulation of amyloplasts in endosperm determines the quality of wheat. Because waxy wheat has a special starch quality, there is a need to understand differences in endosperm and starch morphologies among waxy wheat cultivars. This study investigated differences in the endosperm and amyloplasts of two near-isogenic lines (Shimai19-P and Shimai19-N) and the wheat cultivar Shimai19 during various growth stages using light microscopy and scanning electron microscopy. At 8 days after pollination (DAP), with endosperm development, the amyloplast distributions in the different endosperm regions of the three wheat varieties were in the following order: center of ventral endosperm > subaleurone of ventral endosperm > center of dorsal endosperm > modified aleurone > subaleurone of dorsal endosperm. At 16 DAP, small amyloplasts appeared in the endosperm cells in all three wheat cultivars; subsequently, endosperm cell development until maturity was more rapid in Shimai19-N than in the other varieties. This study revealed variations in amyloplast accumulation among endosperm regions and waxy wheat varieties during wheat grain development, which improved the understanding of nutrient accumulation and nutrient transfer of wheat grains.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-023-01889-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The endosperm is an essential part of wheat grains, and the accumulation of amyloplasts in endosperm determines the quality of wheat. Because waxy wheat has a special starch quality, there is a need to understand differences in endosperm and starch morphologies among waxy wheat cultivars. This study investigated differences in the endosperm and amyloplasts of two near-isogenic lines (Shimai19-P and Shimai19-N) and the wheat cultivar Shimai19 during various growth stages using light microscopy and scanning electron microscopy. At 8 days after pollination (DAP), with endosperm development, the amyloplast distributions in the different endosperm regions of the three wheat varieties were in the following order: center of ventral endosperm > subaleurone of ventral endosperm > center of dorsal endosperm > modified aleurone > subaleurone of dorsal endosperm. At 16 DAP, small amyloplasts appeared in the endosperm cells in all three wheat cultivars; subsequently, endosperm cell development until maturity was more rapid in Shimai19-N than in the other varieties. This study revealed variations in amyloplast accumulation among endosperm regions and waxy wheat varieties during wheat grain development, which improved the understanding of nutrient accumulation and nutrient transfer of wheat grains.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".