Sharing Time-to-Event Data with Privacy Protection.

Luca Bonomi, Liyue Fan
{"title":"Sharing Time-to-Event Data with Privacy Protection.","authors":"Luca Bonomi, Liyue Fan","doi":"10.1109/ichi54592.2022.00014","DOIUrl":null,"url":null,"abstract":"<p><p>Sharing time-to-event data is beneficial for enabling collaborative research efforts (e.g., survival studies), facilitating the design of effective interventions, and advancing patient care (e.g., early diagnosis). Despite numerous privacy solutions for sharing time-to-event data, recent research studies have shown that external information may become available (e.g., self-disclosure of study participation on social media) to an adversary, posing new privacy concerns. In this work, we formulate a cohort inference attack for time-to-event data sharing, in which an informed adversary aims at inferring the membership of a target individual in a specific cohort. Our study investigates the privacy risks associated with time-to-event data and evaluates the empirical privacy protection offered by popular privacy-protecting solutions (e.g., binning, differential privacy). Furthermore, we propose a novel approach to privately release individual level time-to-event data with high utility, while providing indistinguishability guarantees for the input value. Our method TE-Sanitizer is shown to provide effective mitigation against the inference attacks and high usefulness in survival analysis. The results and discussion provide domain experts with insights on the privacy and the usefulness of the studied methods.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473343/pdf/nihms-1815589.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ichi54592.2022.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sharing time-to-event data is beneficial for enabling collaborative research efforts (e.g., survival studies), facilitating the design of effective interventions, and advancing patient care (e.g., early diagnosis). Despite numerous privacy solutions for sharing time-to-event data, recent research studies have shown that external information may become available (e.g., self-disclosure of study participation on social media) to an adversary, posing new privacy concerns. In this work, we formulate a cohort inference attack for time-to-event data sharing, in which an informed adversary aims at inferring the membership of a target individual in a specific cohort. Our study investigates the privacy risks associated with time-to-event data and evaluates the empirical privacy protection offered by popular privacy-protecting solutions (e.g., binning, differential privacy). Furthermore, we propose a novel approach to privately release individual level time-to-event data with high utility, while providing indistinguishability guarantees for the input value. Our method TE-Sanitizer is shown to provide effective mitigation against the inference attacks and high usefulness in survival analysis. The results and discussion provide domain experts with insights on the privacy and the usefulness of the studied methods.

Abstract Image

在保护隐私的前提下共享时间到事件数据。
共享从时间到事件的数据有利于开展合作研究(如生存研究)、促进有效干预措施的设计以及推动患者护理(如早期诊断)。尽管有许多针对共享时间到事件数据的隐私解决方案,但最近的研究表明,外部信息可能会被对手获取(例如,在社交媒体上自我披露参与研究的情况),从而带来新的隐私问题。在这项工作中,我们提出了一种针对时间到事件数据共享的队列推断攻击,在这种攻击中,知情的对手旨在推断目标个体在特定队列中的成员资格。我们的研究调查了与时间到事件数据相关的隐私风险,并评估了流行的隐私保护解决方案(如分档、差分隐私)所提供的经验隐私保护。此外,我们还提出了一种新方法,在为输入值提供不可区分性保证的同时,私下发布具有高效用的个体级时间到事件数据。研究表明,我们的 TE-Sanitizer 方法能有效缓解推理攻击,并在生存分析中具有很高的实用性。研究结果和讨论为领域专家提供了有关所研究方法的隐私性和实用性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信