Mitigating Membership Inference in Deep Learning Applications with High Dimensional Genomic Data.

Chonghao Zhang, Luca Bonomi
{"title":"Mitigating Membership Inference in Deep Learning Applications with High Dimensional Genomic Data.","authors":"Chonghao Zhang,&nbsp;Luca Bonomi","doi":"10.1109/ichi54592.2022.00101","DOIUrl":null,"url":null,"abstract":"<p><p>The use of deep learning techniques in medical applications holds great promises for advancing health care. However, there are growing privacy concerns regarding what information about individual data contributors (i.e., patients in the training set) these deep models may reveal when shared with external users. In this work, we first investigate the membership privacy risks in sharing deep learning models for cancer genomics tasks, and then study the applicability of privacy-protecting strategies for mitigating these privacy risks.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473339/pdf/nihms-1815588.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ichi54592.2022.00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The use of deep learning techniques in medical applications holds great promises for advancing health care. However, there are growing privacy concerns regarding what information about individual data contributors (i.e., patients in the training set) these deep models may reveal when shared with external users. In this work, we first investigate the membership privacy risks in sharing deep learning models for cancer genomics tasks, and then study the applicability of privacy-protecting strategies for mitigating these privacy risks.

Abstract Image

Abstract Image

基于高维基因组数据的深度学习应用中的隶属推理缓解。
深度学习技术在医疗应用中的应用为推进医疗保健带来了巨大的希望。然而,对于这些深度模型在与外部用户共享时可能泄露的个人数据贡献者(即训练集中的患者)的信息,人们越来越关注隐私问题。在这项工作中,我们首先研究了癌症基因组学任务共享深度学习模型中的成员隐私风险,然后研究了隐私保护策略在减轻这些隐私风险方面的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信