{"title":"Changes in the apolipophorin III in Galleria mellonella larvae treated with Pseudomonas aeruginosa exotoxin A","authors":"Bartłomiej Iwański, Mariola Andrejko","doi":"10.1016/j.jinsphys.2023.104536","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, we have demonstrated a correlation in time between changes in the amount of apolipophorin III (apoLp-III) in the fat body and hemocytes of <em>Galleria mellonella</em> larvae challenged with <em>Pseudomonas aeruginosa</em> exotoxin A (exoA). An increase in the amount of apoLp-III was detected 1–8 h after the challenge; then, a temporary decrease was observed after 15 h followed by an increase in the level of apoLp-III, however to a different extent. The profile of apoLp-III forms in the hemolymph, hemocytes, and fat body of the exoA-challenged larvae was analyzed using two-dimensional electrophoresis (IEF/SDS-PAGE) and immunoblotting with anti-apoLp-III antibodies. Two apoLp-III forms differing in isoelectric point values estimated at ∼ 6.5 and ∼ 6.1 in the hemolymph and ∼ 6.5 and ∼ 5.9 in the hemocytes as well as one isoform with p<em>I</em> ∼ 6.5 in the fat body with an additional apoLp-III-derived polypeptide with estimated p<em>I</em> ∼ 6.9 were detected in the control insects. The injection of exoA caused a significant decrease in the abundance of both apoLp-III isoforms in the insect hemolymph. In the hemocytes, a decrease in the amount of the p<em>I</em> ∼ 5.9 isoform was detected, while the major apoLp-III isoform (p<em>I</em> ∼ 6.5) remained unchanged. In addition, appearance of an additional apoLp-III-derived polypeptide with an estimated p<em>I</em> ∼ 5.2 was observed. Interestingly, there were no statistically significant differences in the amount of the main isoform in the fat body between the control and exoA-challenged insects, but the polypeptide with p<em>I ∼</em> 6.9 disappeared completely. It should be noted that the decrease in the amount of apoLp-III and other proteins was especially noticeable at the time points when exoA was detected in the studied tissues.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"149 ","pages":"Article 104536"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191023000628","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, we have demonstrated a correlation in time between changes in the amount of apolipophorin III (apoLp-III) in the fat body and hemocytes of Galleria mellonella larvae challenged with Pseudomonas aeruginosa exotoxin A (exoA). An increase in the amount of apoLp-III was detected 1–8 h after the challenge; then, a temporary decrease was observed after 15 h followed by an increase in the level of apoLp-III, however to a different extent. The profile of apoLp-III forms in the hemolymph, hemocytes, and fat body of the exoA-challenged larvae was analyzed using two-dimensional electrophoresis (IEF/SDS-PAGE) and immunoblotting with anti-apoLp-III antibodies. Two apoLp-III forms differing in isoelectric point values estimated at ∼ 6.5 and ∼ 6.1 in the hemolymph and ∼ 6.5 and ∼ 5.9 in the hemocytes as well as one isoform with pI ∼ 6.5 in the fat body with an additional apoLp-III-derived polypeptide with estimated pI ∼ 6.9 were detected in the control insects. The injection of exoA caused a significant decrease in the abundance of both apoLp-III isoforms in the insect hemolymph. In the hemocytes, a decrease in the amount of the pI ∼ 5.9 isoform was detected, while the major apoLp-III isoform (pI ∼ 6.5) remained unchanged. In addition, appearance of an additional apoLp-III-derived polypeptide with an estimated pI ∼ 5.2 was observed. Interestingly, there were no statistically significant differences in the amount of the main isoform in the fat body between the control and exoA-challenged insects, but the polypeptide with pI ∼ 6.9 disappeared completely. It should be noted that the decrease in the amount of apoLp-III and other proteins was especially noticeable at the time points when exoA was detected in the studied tissues.
期刊介绍:
All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.