On the possibility of estimating myocardial fiber architecture from cardiac strains.

Muhammad Usman, Emilio A Mendiola, Tanmay Mukherjee, Rana Raza Mehdi, Jacques Ohayon, Prasanna G Alluri, Sakthivel Sadayappan, Gaurav Choudhary, Reza Avazmohammadi
{"title":"On the possibility of estimating myocardial fiber architecture from cardiac strains.","authors":"Muhammad Usman, Emilio A Mendiola, Tanmay Mukherjee, Rana Raza Mehdi, Jacques Ohayon, Prasanna G Alluri, Sakthivel Sadayappan, Gaurav Choudhary, Reza Avazmohammadi","doi":"10.1007/978-3-031-35302-4_8","DOIUrl":null,"url":null,"abstract":"<p><p>The myocardium is composed of a complex network of contractile myofibers that are organized in such a way as to produce efficient contraction and relaxation of the heart. The myofiber architecture in the myocardium is a key determinant of cardiac motion and the global or organ-level function of the heart. Reports of architectural remodeling in cardiac diseases, such as pulmonary hypertension and myocardial infarction, potentially contributing to cardiac dysfunction call for the inclusion of an architectural marker for an improved assessment of cardiac function. However, the in-vivo quantification of three-dimensional myo-architecture has proven challenging. In this work, we examine the sensitivity of cardiac strains to varying myofiber orientation using a multiscale finite-element model of the LV. Additionally, we present an inverse modeling approach to predict the myocardium fiber structure from cardiac strains. Our results indicate a strong correlation between fiber orientation and LV kinematics, corroborating that the fiber structure is a principal determinant of LV contractile behavior. Our inverse model was capable of accurately predicting the myocardial fiber range and regional fiber angles from strain measures. A concrete understanding of the link between LV myofiber structure and motion, and the development of non-invasive and feasible means of characterizing the myocardium architecture is expected to lead to advanced LV functional metrics and improved prognostic assessment of structural heart disease.</p>","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478796/pdf/nihms-1922738.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-35302-4_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The myocardium is composed of a complex network of contractile myofibers that are organized in such a way as to produce efficient contraction and relaxation of the heart. The myofiber architecture in the myocardium is a key determinant of cardiac motion and the global or organ-level function of the heart. Reports of architectural remodeling in cardiac diseases, such as pulmonary hypertension and myocardial infarction, potentially contributing to cardiac dysfunction call for the inclusion of an architectural marker for an improved assessment of cardiac function. However, the in-vivo quantification of three-dimensional myo-architecture has proven challenging. In this work, we examine the sensitivity of cardiac strains to varying myofiber orientation using a multiscale finite-element model of the LV. Additionally, we present an inverse modeling approach to predict the myocardium fiber structure from cardiac strains. Our results indicate a strong correlation between fiber orientation and LV kinematics, corroborating that the fiber structure is a principal determinant of LV contractile behavior. Our inverse model was capable of accurately predicting the myocardial fiber range and regional fiber angles from strain measures. A concrete understanding of the link between LV myofiber structure and motion, and the development of non-invasive and feasible means of characterizing the myocardium architecture is expected to lead to advanced LV functional metrics and improved prognostic assessment of structural heart disease.

从心脏应变估计心肌纤维结构的可能性。
心肌由复杂的收缩肌纤维网络组成,这些肌纤维的组织方式使心脏能够有效收缩和放松。心肌的肌纤维结构是决定心脏运动和心脏整体或器官功能的关键因素。有报告称,肺动脉高压和心肌梗塞等心脏疾病的结构重塑可能会导致心脏功能障碍,这就要求加入一种结构标记,以改进对心脏功能的评估。然而,活体量化三维肌结构已被证明具有挑战性。在这项研究中,我们使用左心室多尺度有限元模型研究了心脏应变对不同肌纤维方向的敏感性。此外,我们还提出了一种逆向建模方法,以从心脏应变预测心肌纤维结构。我们的研究结果表明,纤维取向与左心室运动学之间存在很强的相关性,证实了纤维结构是左心室收缩行为的主要决定因素。我们的逆向模型能够通过应变测量准确预测心肌纤维范围和区域纤维角度。对左心室肌纤维结构与运动之间的联系有了具体的了解,并开发出无创、可行的心肌结构表征方法,有望带来先进的左心室功能指标,并改善结构性心脏病的预后评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信