Baricitinib improves pulmonary fibrosis in mice with rheumatoid arthritis-associated interstitial lung disease by inhibiting the Jak2/Stat3 signaling pathway.
{"title":"Baricitinib improves pulmonary fibrosis in mice with rheumatoid arthritis-associated interstitial lung disease by inhibiting the Jak2/Stat3 signaling pathway.","authors":"Hongli Liu, Yan Yang, Jie Zhang, Xuelin Li","doi":"10.1186/s42358-023-00325-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The study explored improvements in pulmonary inflammation and fibrosis in a bovine type II collagen-induced rheumatoid arthritis-associated interstitial lung disease mouse model after treatment with baricitinib and the possible mechanism of action.</p><p><strong>Methods: </strong>A rheumatoid arthritis-associated interstitial lung disease mouse model was established, siRNA Jak2 and lentiviral vectors were transfected with human embryonic lung fibroblast cells. And the levels of relevant proteins in mouse lung tissue and human embryonic lung fibroblasts were detected by Western blotting.</p><p><strong>Results: </strong>The levels of JAK2, p-JAK2, p-STAT3, p-SMAD3, SMA, TGFβR2, FN and COL4 were increased in the lung tissues of model mice (P < 0.5) and decreased after baricitinib intervention (P < 0.05). The expression levels of p-STAT3, p-SMAD3, SMA, TGFβR2, FN and COL4 were reduced after siRNA downregulation of the JAK2 gene (P < 0.01) and increased after lentiviral overexpression of the JAK2 gene (P < 0.01).</p><p><strong>Conclusion: </strong>Baricitinib alleviated fibrosis in the lung tissue of rheumatoid arthritis-associated interstitial lung disease mice, and the mechanism of action may involve the downregulation of Smad3 expression via inhibition of the Jak2/Stat3 signaling pathway, with consequent inhibition of the profibrotic effect of transforming growth factor-β1.</p>","PeriodicalId":48634,"journal":{"name":"Advances in Rheumatology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Rheumatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s42358-023-00325-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Objective: The study explored improvements in pulmonary inflammation and fibrosis in a bovine type II collagen-induced rheumatoid arthritis-associated interstitial lung disease mouse model after treatment with baricitinib and the possible mechanism of action.
Methods: A rheumatoid arthritis-associated interstitial lung disease mouse model was established, siRNA Jak2 and lentiviral vectors were transfected with human embryonic lung fibroblast cells. And the levels of relevant proteins in mouse lung tissue and human embryonic lung fibroblasts were detected by Western blotting.
Results: The levels of JAK2, p-JAK2, p-STAT3, p-SMAD3, SMA, TGFβR2, FN and COL4 were increased in the lung tissues of model mice (P < 0.5) and decreased after baricitinib intervention (P < 0.05). The expression levels of p-STAT3, p-SMAD3, SMA, TGFβR2, FN and COL4 were reduced after siRNA downregulation of the JAK2 gene (P < 0.01) and increased after lentiviral overexpression of the JAK2 gene (P < 0.01).
Conclusion: Baricitinib alleviated fibrosis in the lung tissue of rheumatoid arthritis-associated interstitial lung disease mice, and the mechanism of action may involve the downregulation of Smad3 expression via inhibition of the Jak2/Stat3 signaling pathway, with consequent inhibition of the profibrotic effect of transforming growth factor-β1.
期刊介绍:
Formerly named Revista Brasileira de Reumatologia, the journal is celebrating its 60th year of publication.
Advances in Rheumatology is an international, open access journal publishing pre-clinical, translational and clinical studies on all aspects of paediatric and adult rheumatic diseases, including degenerative, inflammatory and autoimmune conditions. The journal is the official publication of the Brazilian Society of Rheumatology and welcomes original research (including systematic reviews and meta-analyses), literature reviews, guidelines and letters arising from published material.