Gene-encoded nanoparticle vaccine platforms for in vivo assembly of multimeric antigen to promote adaptive immunity.

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Nicholas J Tursi, Ziyang Xu, Daniel W Kulp, David B Weiner
{"title":"Gene-encoded nanoparticle vaccine platforms for in vivo assembly of multimeric antigen to promote adaptive immunity.","authors":"Nicholas J Tursi, Ziyang Xu, Daniel W Kulp, David B Weiner","doi":"10.1002/wnan.1880","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoparticle vaccines are a diverse category of vaccines for the prophylaxis or treatment of various diseases. Several strategies have been employed for their optimization, especially to enhance vaccine immunogenicity and generate potent B-cell responses. Two major modalities utilized for particulate antigen vaccines include using nanoscale structures for antigen delivery and nanoparticles that are themselves vaccines due to antigen display or scaffolding-the latter of which we will define as \"nanovaccines.\" Multimeric antigen display has a variety of immunological benefits compared to monomeric vaccines mediated through potentiating antigen-presenting cell presentation and enhancing antigen-specific B-cell responses through B-cell activation. The majority of nanovaccine assembly is done in vitro using cell lines. However, in vivo assembly of scaffolded vaccines potentiated using nucleic acids or viral vectors is a burgeoning modality of nanovaccine delivery. Several advantages to in vivo assembly exist, including lower costs of production, fewer production barriers, as well as more rapid development of novel vaccine candidates for emerging diseases such as SARS-CoV-2. This review will characterize the methods for de novo assembly of nanovaccines in the host using methods of gene delivery including nucleic acid and viral vectored vaccines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 4","pages":"e1880"},"PeriodicalIF":6.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665986/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1880","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoparticle vaccines are a diverse category of vaccines for the prophylaxis or treatment of various diseases. Several strategies have been employed for their optimization, especially to enhance vaccine immunogenicity and generate potent B-cell responses. Two major modalities utilized for particulate antigen vaccines include using nanoscale structures for antigen delivery and nanoparticles that are themselves vaccines due to antigen display or scaffolding-the latter of which we will define as "nanovaccines." Multimeric antigen display has a variety of immunological benefits compared to monomeric vaccines mediated through potentiating antigen-presenting cell presentation and enhancing antigen-specific B-cell responses through B-cell activation. The majority of nanovaccine assembly is done in vitro using cell lines. However, in vivo assembly of scaffolded vaccines potentiated using nucleic acids or viral vectors is a burgeoning modality of nanovaccine delivery. Several advantages to in vivo assembly exist, including lower costs of production, fewer production barriers, as well as more rapid development of novel vaccine candidates for emerging diseases such as SARS-CoV-2. This review will characterize the methods for de novo assembly of nanovaccines in the host using methods of gene delivery including nucleic acid and viral vectored vaccines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.

Abstract Image

基因编码的纳米颗粒疫苗平台,用于体内组装多聚抗原以促进适应性免疫。
纳米颗粒疫苗是预防或治疗各种疾病的多种疫苗。有几种策略被用于优化它们,特别是增强疫苗的免疫原性和产生有效的b细胞反应。用于颗粒抗原疫苗的两种主要模式包括使用纳米级结构进行抗原递送和纳米颗粒本身是疫苗,因为抗原展示或支架-我们将后者定义为“纳米疫苗”。与单体疫苗相比,多聚体抗原展示具有多种免疫益处,通过增强抗原呈递细胞呈递和通过b细胞活化增强抗原特异性b细胞应答。大多数纳米疫苗的组装是在体外使用细胞系完成的。然而,利用核酸或病毒载体增强的支架疫苗的体内组装是一种新兴的纳米疫苗递送方式。体内组装有几个优势,包括生产成本更低、生产障碍更少,以及针对新出现疾病(如SARS-CoV-2)的新型候选疫苗开发速度更快。本文将介绍利用核酸和病毒载体疫苗等基因传递方法在宿主体内重新组装纳米疫苗的方法。本文分类如下:治疗方法和药物发现>传染病纳米医学-生物学启发的纳米材料>基于核酸的结构-生物学启发的纳米材料>基于蛋白质和病毒的结构治疗方法和药物发现>新兴技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology NANOSCIENCE & NANOTECHNOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
16.60
自引率
2.30%
发文量
93
期刊介绍: Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists. Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信