{"title":"Epidemiologic Characteristics of SARS-CoV-2 Omicron BA.5.1.3 Variant and the Protection Provided By Inactivated Vaccination.","authors":"Taoyuan Li, Shaorong Wu, Jiaxiong Tan, Zhengyi Huang, Lijun Li, Wenzhi Luo, Yayun Wu, Jun Lyu, Xujing Liang","doi":"10.1089/vim.2023.0050","DOIUrl":null,"url":null,"abstract":"<p><p>Omicron variants have become the dominant SARS-CoV-2 variants due to their increased transmissibility and immune-escape ability. An outbreak of the Omicron variant BA.5.1.3 occurred in August 2022 in Sanya, China. Studying Omicron variants can promote the understanding of them and further contribute to managing the SARS-CoV-2 prevalence. This retrospective study analyzed the data of 258 patients with asymptomatic or mild SARS-CoV-2 admitted to the First Cabin Hospital of Sanya, China, between August 14 and September 4, 2022. The 258 patients comprised 128 males and 130 females with a mean age of 36.6 years and mean length of medical observation (LMO) of 10.1 days. Multiple linear regression analysis indicated that LMO was positively and negatively associated with age (<i>p</i> = 0.036) and vaccination status (<i>p</i> = 0.004), respectively. A Cox proportional-hazards model revealed that age (hazard ratio [HR] = 0.99, <i>p</i> = 0.029) and vaccination (HR = 1.23, <i>p</i> = 0.023) were risk and protective factors for LMO, respectively. Causal mediation analysis indicated that vaccination suppressed the effect of prolonging LMO caused by increasing age. Recovery times became longer with increasing age, which could be counterbalanced by vaccination. The present results indicate that vaccination interventions, even those developed through inactivated approaches, can still provide protection against Omicron variants.</p>","PeriodicalId":23665,"journal":{"name":"Viral immunology","volume":" ","pages":"544-549"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viral immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vim.2023.0050","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Omicron variants have become the dominant SARS-CoV-2 variants due to their increased transmissibility and immune-escape ability. An outbreak of the Omicron variant BA.5.1.3 occurred in August 2022 in Sanya, China. Studying Omicron variants can promote the understanding of them and further contribute to managing the SARS-CoV-2 prevalence. This retrospective study analyzed the data of 258 patients with asymptomatic or mild SARS-CoV-2 admitted to the First Cabin Hospital of Sanya, China, between August 14 and September 4, 2022. The 258 patients comprised 128 males and 130 females with a mean age of 36.6 years and mean length of medical observation (LMO) of 10.1 days. Multiple linear regression analysis indicated that LMO was positively and negatively associated with age (p = 0.036) and vaccination status (p = 0.004), respectively. A Cox proportional-hazards model revealed that age (hazard ratio [HR] = 0.99, p = 0.029) and vaccination (HR = 1.23, p = 0.023) were risk and protective factors for LMO, respectively. Causal mediation analysis indicated that vaccination suppressed the effect of prolonging LMO caused by increasing age. Recovery times became longer with increasing age, which could be counterbalanced by vaccination. The present results indicate that vaccination interventions, even those developed through inactivated approaches, can still provide protection against Omicron variants.
期刊介绍:
Viral Immunology delivers cutting-edge peer-reviewed research on rare, emerging, and under-studied viruses, with special focus on analyzing mutual relationships between external viruses and internal immunity. Original research, reviews, and commentaries on relevant viruses are presented in clinical, translational, and basic science articles for researchers in multiple disciplines.
Viral Immunology coverage includes:
Human and animal viral immunology
Research and development of viral vaccines, including field trials
Immunological characterization of viral components
Virus-based immunological diseases, including autoimmune syndromes
Pathogenic mechanisms
Viral diagnostics
Tumor and cancer immunology with virus as the primary factor
Viral immunology methods.