Sharath Mohan Bhat, Palla Ranga Prasad, Manjunath B Joshi
{"title":"Novel insights into DNA methylation-based epigenetic regulation of breast tumor angiogenesis.","authors":"Sharath Mohan Bhat, Palla Ranga Prasad, Manjunath B Joshi","doi":"10.1016/bs.ircmb.2023.04.002","DOIUrl":null,"url":null,"abstract":"<p><p>Breast tumors are highly vascularized and dependent on angiogenesis for growth, progression and metastasis. Like other solid tumors, vasculature in breast tumors also display leaky and tortuous phenotype and hence inhibit immune cell infiltration, show reduced efficacy to anticancer drugs and radiotherapy. Epigenetic reprogramming including significant alterations in DNA methylation in tumor and stromal cells generate an imbalance in expression of pro- and anti-angiogenic factors and subsequently lead to disordered angiogenesis. Hence, understanding DNA methylation-based regulation of angiogenesis in breast tumors may open new avenues for designing therapeutic targets. Our present review manuscript summarized contemporary knowledge of influence of DNA methylation in regulating angiogenesis. Further, we identified novel set of pro-angiogenic genes enriched in endothelial cells which are coregulated with DNMT isoforms in breast tumors and harboring CpG islands. Our analysis revealed promoters of pro-angiogenic genes were hypomethylated and anti-angiogenic genes were hypermethylated in tumors and further reflected on their expression patterns. Interestingly, promoter DNA methylation intensities of novel set of pro-angiogenic genes significantly correlated to patient survival outcome.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":"380 ","pages":"63-96"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of cell and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ircmb.2023.04.002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Breast tumors are highly vascularized and dependent on angiogenesis for growth, progression and metastasis. Like other solid tumors, vasculature in breast tumors also display leaky and tortuous phenotype and hence inhibit immune cell infiltration, show reduced efficacy to anticancer drugs and radiotherapy. Epigenetic reprogramming including significant alterations in DNA methylation in tumor and stromal cells generate an imbalance in expression of pro- and anti-angiogenic factors and subsequently lead to disordered angiogenesis. Hence, understanding DNA methylation-based regulation of angiogenesis in breast tumors may open new avenues for designing therapeutic targets. Our present review manuscript summarized contemporary knowledge of influence of DNA methylation in regulating angiogenesis. Further, we identified novel set of pro-angiogenic genes enriched in endothelial cells which are coregulated with DNMT isoforms in breast tumors and harboring CpG islands. Our analysis revealed promoters of pro-angiogenic genes were hypomethylated and anti-angiogenic genes were hypermethylated in tumors and further reflected on their expression patterns. Interestingly, promoter DNA methylation intensities of novel set of pro-angiogenic genes significantly correlated to patient survival outcome.
期刊介绍:
International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology-both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.