Design and Construction of Carbon-Coated Fe3O4/Cr2O3 Heterostructures Nanoparticles as High-Performance Anodes for Lithium Storage

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2023-09-03 DOI:10.1002/smll.202304264
Huan Liu, Weibin Zhang, Weili Wang, Guifang Han, Jingde Zhang, Shiwei Zhang, Jianchuan Wang, Yong Du
{"title":"Design and Construction of Carbon-Coated Fe3O4/Cr2O3 Heterostructures Nanoparticles as High-Performance Anodes for Lithium Storage","authors":"Huan Liu,&nbsp;Weibin Zhang,&nbsp;Weili Wang,&nbsp;Guifang Han,&nbsp;Jingde Zhang,&nbsp;Shiwei Zhang,&nbsp;Jianchuan Wang,&nbsp;Yong Du","doi":"10.1002/smll.202304264","DOIUrl":null,"url":null,"abstract":"<p>Transition metal oxides, highly motivated anodes for lithium-ion batteries due to high theoretical capacity, typically afflict by inferior conductivity and significant volume variation. Architecting heterogeneous structures with distinctive interfacial features can effectively regulate the electronic structure to favor electrochemical properties. Herein, an engineered carbon-coated nanosized Fe<sub>3</sub>O<sub>4</sub>/Cr<sub>2</sub>O<sub>3</sub> heterostructure with multiple interfaces is synthesized by a facile sol–gel method and subsequent heat treatment. Such ingenious components and structural design deliver rapid Li<sup>+</sup> migration and facilitate charge transfer at the heterogeneous interface. Simultaneously, the strong coupling synergistic interactions between Fe<sub>3</sub>O<sub>4</sub>, Cr<sub>2</sub>O<sub>3</sub>, and carbon layers establish multiple interface structures and built-in electric fields, which accelerate ion/electron transport and effectively eliminate volume expansion. As a result, the multi-interface heterostructure, as a lithium-ion battery anode, exhibits superior cycling stability maintaining a reversible capacity of 651.2 mAh g<sup>−1</sup> for 600 cycles at 2 C. The density functionaltheory calculations not only unravel the electronic structure of the modulation but also illustrate favorable lithium-ion adsorption kinetics. This multi-interface heterostructure strategy offers a pathway for the development of advanced alkali metal-ion batteries.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"19 52","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202304264","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal oxides, highly motivated anodes for lithium-ion batteries due to high theoretical capacity, typically afflict by inferior conductivity and significant volume variation. Architecting heterogeneous structures with distinctive interfacial features can effectively regulate the electronic structure to favor electrochemical properties. Herein, an engineered carbon-coated nanosized Fe3O4/Cr2O3 heterostructure with multiple interfaces is synthesized by a facile sol–gel method and subsequent heat treatment. Such ingenious components and structural design deliver rapid Li+ migration and facilitate charge transfer at the heterogeneous interface. Simultaneously, the strong coupling synergistic interactions between Fe3O4, Cr2O3, and carbon layers establish multiple interface structures and built-in electric fields, which accelerate ion/electron transport and effectively eliminate volume expansion. As a result, the multi-interface heterostructure, as a lithium-ion battery anode, exhibits superior cycling stability maintaining a reversible capacity of 651.2 mAh g−1 for 600 cycles at 2 C. The density functionaltheory calculations not only unravel the electronic structure of the modulation but also illustrate favorable lithium-ion adsorption kinetics. This multi-interface heterostructure strategy offers a pathway for the development of advanced alkali metal-ion batteries.

Abstract Image

设计和构建碳涂层 Fe3 O4 /Cr2 O3 异质结构纳米粒子作为高性能锂储能阳极
过渡金属氧化物是锂离子电池的阳极,因其理论容量高而备受青睐。构建具有独特界面特征的异质结构可以有效调节电子结构,从而提高电化学性能。本文通过简便的溶胶-凝胶法和随后的热处理合成了具有多个界面的工程碳涂层纳米尺寸 Fe3 O4 /Cr2 O3 异质结构。这种巧妙的成分和结构设计可实现 Li+ 的快速迁移,并促进异质界面上的电荷转移。同时,Fe3 O4、Cr2 O3 和碳层之间的强耦合协同作用建立了多界面结构和内置电场,从而加速了离子/电子传输并有效消除了体积膨胀。密度泛函理论计算不仅揭示了调制的电子结构,还说明了有利的锂离子吸附动力学。这种多界面异质结构策略为开发先进的碱金属离子电池提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信