{"title":"Design and Construction of Carbon-Coated Fe3O4/Cr2O3 Heterostructures Nanoparticles as High-Performance Anodes for Lithium Storage","authors":"Huan Liu, Weibin Zhang, Weili Wang, Guifang Han, Jingde Zhang, Shiwei Zhang, Jianchuan Wang, Yong Du","doi":"10.1002/smll.202304264","DOIUrl":null,"url":null,"abstract":"<p>Transition metal oxides, highly motivated anodes for lithium-ion batteries due to high theoretical capacity, typically afflict by inferior conductivity and significant volume variation. Architecting heterogeneous structures with distinctive interfacial features can effectively regulate the electronic structure to favor electrochemical properties. Herein, an engineered carbon-coated nanosized Fe<sub>3</sub>O<sub>4</sub>/Cr<sub>2</sub>O<sub>3</sub> heterostructure with multiple interfaces is synthesized by a facile sol–gel method and subsequent heat treatment. Such ingenious components and structural design deliver rapid Li<sup>+</sup> migration and facilitate charge transfer at the heterogeneous interface. Simultaneously, the strong coupling synergistic interactions between Fe<sub>3</sub>O<sub>4</sub>, Cr<sub>2</sub>O<sub>3</sub>, and carbon layers establish multiple interface structures and built-in electric fields, which accelerate ion/electron transport and effectively eliminate volume expansion. As a result, the multi-interface heterostructure, as a lithium-ion battery anode, exhibits superior cycling stability maintaining a reversible capacity of 651.2 mAh g<sup>−1</sup> for 600 cycles at 2 C. The density functionaltheory calculations not only unravel the electronic structure of the modulation but also illustrate favorable lithium-ion adsorption kinetics. This multi-interface heterostructure strategy offers a pathway for the development of advanced alkali metal-ion batteries.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"19 52","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202304264","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal oxides, highly motivated anodes for lithium-ion batteries due to high theoretical capacity, typically afflict by inferior conductivity and significant volume variation. Architecting heterogeneous structures with distinctive interfacial features can effectively regulate the electronic structure to favor electrochemical properties. Herein, an engineered carbon-coated nanosized Fe3O4/Cr2O3 heterostructure with multiple interfaces is synthesized by a facile sol–gel method and subsequent heat treatment. Such ingenious components and structural design deliver rapid Li+ migration and facilitate charge transfer at the heterogeneous interface. Simultaneously, the strong coupling synergistic interactions between Fe3O4, Cr2O3, and carbon layers establish multiple interface structures and built-in electric fields, which accelerate ion/electron transport and effectively eliminate volume expansion. As a result, the multi-interface heterostructure, as a lithium-ion battery anode, exhibits superior cycling stability maintaining a reversible capacity of 651.2 mAh g−1 for 600 cycles at 2 C. The density functionaltheory calculations not only unravel the electronic structure of the modulation but also illustrate favorable lithium-ion adsorption kinetics. This multi-interface heterostructure strategy offers a pathway for the development of advanced alkali metal-ion batteries.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.